Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 140–150 | Cite as

Bio-adenine-bridged molecular design approach toward non-covalent functionalized graphene by liquid-phase exfoliation

  • Yao Liu
  • Renke Li
  • Bo Liang
  • Chengfeng Li
  • Jiang-huai Hu
  • Ke ZengEmail author
  • Gang YangEmail author
Chemical routes to materials
  • 34 Downloads

Abstract

Here, the supramolecular interaction between nucleobase adenine and graphene was strengthened by a novel chemical molecular designing strategy. Based on this approach, the adenine-bridged aromatic phthalonitrile (AAPN) was prepared as stabilizer toward liquid-phase exfoliation for non-covalent functionalized graphene (AAPN-G). A series of experiments were carried out to verify the strong supramolecular interaction between AAPN and graphene. The feasibility of multifunctional application of the AAPN was briefly demonstrated. This work constitutes a feasible strategy in the preparation and functionalization of graphene that could be extended to some other (bio)molecules toward realization of designing multifunctional materials.

Notes

Acknowledgements

We thank the Analytical & Testing Center, Sichuan University, P. R. China, for the molecular simulation (Materials Studio 8.0) support.

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.

Supplementary material

10853_2019_3931_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  2. 2.
    Lin S, Ju S, Shi G, Zhang J, He Y, Jiang D (2019) Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials. J Mater Sci 54:7165–7179.  https://doi.org/10.1007/s10853-019-03372-4 CrossRefGoogle Scholar
  3. 3.
    Liu J, Ma Q, Huang Z, Liu G, Zhang H (2019) Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv Mater 31:1800696CrossRefGoogle Scholar
  4. 4.
    Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54:5992–6026.  https://doi.org/10.1007/s10853-018-03244-3 CrossRefGoogle Scholar
  5. 5.
    Peng P, Li L, He P, Zhu Y, Fu J, Huang Y et al (2019) One-step selective laser patterning of copper/graphene flexible electrodes. Nanotechnology 30:185301CrossRefGoogle Scholar
  6. 6.
    Li T, Liu P, Gao Y, Diao S, Wang X, Yang B et al (2019) High electrochemical performance of supercapacitor electrode with para-aminophenyl graphene/polyaniline cross-linking nanocomposites. Mater Lett 244:13–17CrossRefGoogle Scholar
  7. 7.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  8. 8.
    Liu Y, Li J, Li W, Li Y, Chen Q, Zhan F (2015) Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J Power Sources 299:492–500CrossRefGoogle Scholar
  9. 9.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRefGoogle Scholar
  10. 10.
    Rouf TB, Kokini JL (2019) Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51:9915–9945.  https://doi.org/10.1007/s10853-016-0238-4 CrossRefGoogle Scholar
  11. 11.
    Khodadadi Dizaji A, Mortaheb HR, Mokhtarani B (2016) Noncovalently functionalized graphene oxide/graphene with imidazolium-based ionic liquids for adsorptive removal of dibenzothiophene from model fuel. J Mater Sci 51:10092–10103.  https://doi.org/10.1007/s10853-016-0237-5 CrossRefGoogle Scholar
  12. 12.
    Tahara K, Ishikawa T, Hirsch BE, Kubo Y, Brown A, Eyley S et al (2018) Self-assembled monolayers as templates for linearly nanopatterned covalent chemical functionalization of graphite and graphene surfaces. ACS Nano 12:11520–11528CrossRefGoogle Scholar
  13. 13.
    Lin P, Meng L, Huang Y, Liu L, Fan D (2015) Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups. Appl Surf Sci 324:784–790CrossRefGoogle Scholar
  14. 14.
    Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK et al (2010) Organic functionalisation of graphenes. Chem Commun 46(10):1766–1768CrossRefGoogle Scholar
  15. 15.
    Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRefGoogle Scholar
  16. 16.
    Yu G, Xue M, Zhang Z, Li J, Han C, Huang F (2012) A water-soluble pillar[6]arene: synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J Am Chem Soc 134:13248–13251CrossRefGoogle Scholar
  17. 17.
    Yu G, Li J, Yu W, Han C, Mao Z, Gao C et al (2013) Carbon nanotube/biocompatible bola-amphiphile supramolecular biohybrid materials: preparation and their application in bacterial cell agglutination. Adv Mater 25:6373–6379CrossRefGoogle Scholar
  18. 18.
    Yang J, Yu G, Xia D, Huang F (2014) A pillar[6]arene-based UV-responsive supra-amphiphile: synthesis, self-assembly, and application in dispersion of multiwalled carbon nanotubes in water. Chem Commun 50:3993–3995CrossRefGoogle Scholar
  19. 19.
    Tang Z, Lei Y, Guo B, Zhang L, Jia D (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53:673–680CrossRefGoogle Scholar
  20. 20.
    Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612–1618CrossRefGoogle Scholar
  21. 21.
    Kodali VK, Scrimgeour J, Kim S, Hankinson JH, Carroll KM, de Heer WA et al (2011) Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27:863–865CrossRefGoogle Scholar
  22. 22.
    Paredes JI, Villarrodil S (2016) Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. Nanoscale 8:15389–15413CrossRefGoogle Scholar
  23. 23.
    Cheng G, Han X, Hao S, Nisic M, Zheng S (2018) In situ caging of biomolecules in graphene hybrids for light modulated bioactivity. ACS Appl Mater Interfaces 10:3361–3371CrossRefGoogle Scholar
  24. 24.
    Liu F, Choi JY, Seo TS (2010) DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem Commun 46:2844–2846CrossRefGoogle Scholar
  25. 25.
    Sharifi F, Bauld R, Ahmed MS, Fanchini G (2012) Transparent and conducting graphene-RNA-based nanocomposites. Small 8:699–706CrossRefGoogle Scholar
  26. 26.
    Ayán-Varela M, Pérez-Vidal Ó, Paredes JI, Munuera JM, Villar-Rodil S, Díaz-González M et al (2017) Aqueous exfoliation of transition metal dichalcogenides assisted by DNA/RNA nucleotides: catalytically active and biocompatible nanosheets stabilized by acid-base interactions. ACS Appl Mater Interfaces 9:2835–2845CrossRefGoogle Scholar
  27. 27.
    Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K (2000) Design of conjugated molecular materials for optoelectronics. J Mater Chem 10:157–161CrossRefGoogle Scholar
  28. 28.
    Jiang H (2010) Organic ambipolar conjugated molecules for electronics: synthesis and structure-property relationships. Macromol Rapid Commun 31:2007–2034CrossRefGoogle Scholar
  29. 29.
    Cheng Y, Qi Y, Tang Y, Zheng C, Wan Y, Huang W et al (2016) Controlling intramolecular conformation through nonbonding interaction for soft-conjugated materials: molecular design and optoelectronic properties. J Phys Chem Lett 7:3609–3615CrossRefGoogle Scholar
  30. 30.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRefGoogle Scholar
  31. 31.
    Hu J, Wang Z, Lu Z, Chen C, Shi M, Wang J et al (2017) Bio-based adenine-containing high performance polyimide. Polymer 119:59–65CrossRefGoogle Scholar
  32. 32.
    Hu J, Chen C, Yang F, He B, Lu Z, Li R et al (2018) High performance polyimides containing bio-molecule adenine building block from DNA. Polymer 146(20):407–416CrossRefGoogle Scholar
  33. 33.
    Hu J, Li R, Chen C, Lu Z, Yang G, Zeng K (2018) New insights into mechanism of negative in-plane CTE based on bio-based adenine-containing polyimide film. Polymer 146(20):133–141CrossRefGoogle Scholar
  34. 34.
    Lu Z, Hu JH, Chen C, Peng WF, Liu ZZ, Liu Y et al (2018) Preparation and characterization of adenine-based polyimide/nano-silica hybrid films. Eur Polymer J 102:209–218CrossRefGoogle Scholar
  35. 35.
    Chen C, Hu J, Wang Z, Ma J, Cheng K, Lv J et al (2018) Synthesis and characterization of novel polyamides containing purine moiety. Polym Plast Technol Eng 57(13):1325–1333CrossRefGoogle Scholar
  36. 36.
    Pu F, Ren J, Qu X (2018) Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 47:1285–1306CrossRefGoogle Scholar
  37. 37.
    Li C, Zhou C, Lv J, Liang B, Li R, Liu Y et al (2019) Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam. Carbon 149:190–202CrossRefGoogle Scholar
  38. 38.
    Peng W, Yao F, Hu J, Liu Y, Lu Z, Liu Y et al (2018) Renewable protein-based monomer for thermosets: a case study on phthalonitrile resin. Green Chem 20:5158–5168CrossRefGoogle Scholar
  39. 39.
    Laskoski M, Clarke JS, Neal A, Harvey BG, Ricks-Laskoski HL, Hervey WJ et al (2016) Sustainable high-temperature phthalonitrile resins derived from resveratrol and dihydroresveratrol. ChemistrySelect 1:3423–3427CrossRefGoogle Scholar
  40. 40.
    Zeng K, Zhou K, Zhou S, Hong H, Zhou H, Wang Y et al (2009) Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds. Eur Polym J 45:1328–1335CrossRefGoogle Scholar
  41. 41.
    Wu D, Zhao Y, Zeng K, Yang G (2012) A novel benzimidazole-containing phthalonitrile monomer with unique polymerization behavior. J Polym Sci A Polym Chem 50:4977–4982CrossRefGoogle Scholar
  42. 42.
    Anbarasan PM, Vasudevan K, Kumar PS, Prakasam A, Geetha M, Lalithambigai K (2012) Structural and spectral properties of 4-phenoxyphthalonitrile dye sensitizer for solar cell applications. Bull Mater Sci 35:265–275CrossRefGoogle Scholar
  43. 43.
    Dong S, Xu M, Wei J, Yang X, Liu X (2014) The preparation and wide frequency microwave absorbing properties of tri-substituted-bisphthalonitrile/Fe3O4 magnetic hybrid microspheres. J Magn Magn Mater 349:15–20CrossRefGoogle Scholar
  44. 44.
    Liu Y, Hu J, Li R, Li C, Liang B, Liu Y et al (2019) A prospective partial bio-based diamine-adenine-monomer platform for high performance polymer: a case study on phthalonitrile resin. Polym Degrad Stab 167:114–123CrossRefGoogle Scholar
  45. 45.
    Dong Y, Lam JW, Qin A, Li Z, Sun J, Sung HH et al (2007) Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chem Commun (Camb) 7:40–42CrossRefGoogle Scholar
  46. 46.
    Du W, Lu J, Sun P, Zhu Y, Jiang X (2013) Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chem Phys Lett 568:198–201CrossRefGoogle Scholar
  47. 47.
    Carrasco PM, Montes S, García I, Borghei M, Jiang H, Odriozola I et al (2014) High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon 70:157–163CrossRefGoogle Scholar
  48. 48.
    Backes C, Paton KR, Hanlon D, Yuan S, Katsnelson MI, Houston J et al (2016) Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8:4311–4323CrossRefGoogle Scholar
  49. 49.
    Narayan R, Lim J, Jeon T, Li DJ, Kim SO (2017) Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon 119:555–568CrossRefGoogle Scholar
  50. 50.
    Sun Y, Chen L, Cui L, Zhang Y, Du X (2018) Molecular dynamics simulation of cross-linked epoxy resin and its interaction energy with graphene under two typical force fields. Comput Mater Sci 143:240–247CrossRefGoogle Scholar
  51. 51.
    Caridad B, Paredes JI, Pérez Vidal O, Villar Rodil S, Pagán A, Cenis JL et al (2018) A biosupramolecular approach to graphene: complementary nucleotide-nucleobase combinations as enhanced stabilizers towards aqueous-phase exfoliation and functional graphene-nucleotide hydrogels. Carbon 129:321–334CrossRefGoogle Scholar
  52. 52.
    Ayán-Varela M, Paredes JI, Guardia L, Villar-Rodil S, Munuera JM, Díaz-González M et al (2015) Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Appl Mater Interfaces 7:10293–10307CrossRefGoogle Scholar
  53. 53.
    Sun J, Hu C, Liu Z, Liu H, Qu J (2019) Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon 145:140–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations