Journal of Materials Science

, Volume 55, Issue 1, pp 116–124 | Cite as

Flexible tuning of hole-based localized surface plasmon resonance in roxbyite Cu1.8S nanodisks via particle size, carrier density and plasmon coupling

  • Lihui ChenEmail author
  • Haifeng Hu
  • Yuan Li
  • Rui Chen
  • Guohua LiEmail author
Chemical routes to materials


Semiconductor nanocrystals (NCs) heavily doped with cation/anion vacancies or foreign metal ions can support localized surface plasmon resonance (LSPR) in the near-infrared (NIR) and mid-infrared (MIR) spectral wavelengths. Typically, nonstoichiometric copper sulfide Cu2−xS NCs with different x values (0 < x ≤ 1) have attracted numerous attention because of hole-based, particle size, morphology, hole density and crystal phase-dependent LSPR. In spite of excited development of methodology for LSPR manipulation, systematic LSPR tuning of Cu2−xS NCs with a special crystal phase has been limited. Herein, roxbyite Cu1.8S nanodisks (NDs) were selected as a model and their LSPR was readily tuned by particle size, hole density via chemical oxidation and reduction, self-assembly and disassembly in solution and plasmon coupling in multilayer films. Particle size, hole density and plasmon coupling severely affect their LSPR peak position and absorption intensity. Therefore, the ability of flexible LSPR tuning gifts roxbyite Cu1.8S NDs great potential in plasmonic applications, including photocatalysis, photothermal agent, two-photon photochemistry and many others in NIR and MIR regions.



This work was supported by the Natural Science Foundation of Zhejiang Province (No. LQ19B010002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3923_MOESM1_ESM.docx (216 kb)
Supplementary material 1 (DOCX 215 kb)


  1. 1.
    Kriegel I, Jiang C, Rodríguez-Fernández J, Schaller RD, Talapin DV, da Como E, Feldmann J (2012) Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J Am Chem Soc 134:1583–1590CrossRefGoogle Scholar
  2. 2.
    Guo LM, Cao JQ, Zhang JM, Hao YN, Bi K (2019) Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays. J Mater Sci 54:10379–10388. CrossRefGoogle Scholar
  3. 3.
    Guillén C, Herrero J (2017) Nanocrystalline copper sulfide and copper selenide thin films with p-type metallic behavior. J Mater Sci 52:13886–13896. CrossRefGoogle Scholar
  4. 4.
    Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10:361–366CrossRefGoogle Scholar
  5. 5.
    Chakrabarti DJ, Laughlin DE (1983) The Cu–S (copper–sulfur) system. Bull Alloy Phase Diagr 4:254–271CrossRefGoogle Scholar
  6. 6.
    Hsu SW, On K, Tao AR (2011) Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. J Am Chem Soc 133:19072–19075CrossRefGoogle Scholar
  7. 7.
    Xie Y, Carbone L, Nobile C, Grillo V, D’Agostino S, Sala FD, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli PD (2013) Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano 7:7352–7369CrossRefGoogle Scholar
  8. 8.
    Li WH, Shavel A, Guzman R, Rubio-Garcia J, Flox C, Fan JD, Cadavid D, Ibaáñez M, Arbiol J, Morante JR, Cabot A (2011) Morphology evolution of Cu2−xS nanoparticles: from spheres to dodecahedrons. Chem Commun 47:10332–10334CrossRefGoogle Scholar
  9. 9.
    Fang JF, Zhang PC, Zhou G (2017) Hydrothermal synthesis of highly stable copper sulfide nanorods for efficient photo-thermal conversion. Mater Lett 217:71–74CrossRefGoogle Scholar
  10. 10.
    Chandra M, Bhunia K, Pradhan D (2018) Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg Chem 57:4524–4533CrossRefGoogle Scholar
  11. 11.
    Hsu SW, Bryks W, Tao AR (2012) Effects of carrier density and shape on the localized surface plasmon resonances of Cu2−xS Nanodisks. Chem Mater 24:3765–3771CrossRefGoogle Scholar
  12. 12.
    Kriegel I, Rodríguez-Fernández J, Wisnet A, Zhang H, Waurisch C, Eychmüller A, Dubavik A, Govorov AO, Feldmann J (2013) Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances. ACS Nano 7:4367–4377CrossRefGoogle Scholar
  13. 13.
    Hartstein KH, Brozek CK, Hinterding SOM, Gamelin DR (2018) Copper-coupled electron transfer in colloidal plasmonic copper-sulfide nanocrystals probed by in situ spectroelectrochemistry. J Am Chem Soc 140:3434–3442CrossRefGoogle Scholar
  14. 14.
    Hsu SW, Ngo C, Tao AR (2014) Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett 14:2372–2380CrossRefGoogle Scholar
  15. 15.
    Kanehara M, Arakawa H, Honda T, Saruyama M, Teranishi T (2012) Large-scale synthesis of high-quality metal sulfide semiconductor quantum dots with tunable surface-plasmon resonance frequencies. Chem Eur J 18:9230–9238CrossRefGoogle Scholar
  16. 16.
    van de Hulst HC (1981) Light scattering by small particles. Dover, New YorkGoogle Scholar
  17. 17.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  18. 18.
    Zhou DL, Liu D, Xu W, Yin Z, Chen X, Zhou PW, Cui SB, Chen ZG, Song HW (2016) Observation of considerable upconversion enhancement induced by Cu2−xS plasmon nanoparticles. ACS Nano 10:5169–5179CrossRefGoogle Scholar
  19. 19.
    Ding XG, Liow CH, Zhang MG, Huang RJ, Li CY, Shen H, Liu MY, Zou Y, Gao N, Zhang ZJ, Li YG, Wang QB, Li SZ, Jiang J (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136:15684–15693CrossRefGoogle Scholar
  20. 20.
    Cui JB, Li YJ, Liu L, Chen L, Xu J, Ma JW, Fang G, Zhu EB, Wu H, Zhao LX, Wang LY, Huang Y (2015) Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett 15:6295–6301CrossRefGoogle Scholar
  21. 21.
    Chen LH, Sakamoto M, Sato R, Teranishi T (2015) Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling. Faraday Discuss 181:355–364CrossRefGoogle Scholar
  22. 22.
    Zhai Y, Shim M (2017) Effects of copper precursor reactivity on the shape and phase of copper sulfide nanocrystals. Chem Mater 29:2390–2397CrossRefGoogle Scholar
  23. 23.
    Dorfs D, Härtling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L (2011) Reversible tunability of the near-infrared valence band plasmon resonance in Cu2−xSe nanocrystals. J Am Chem Soc 133:11175–11180CrossRefGoogle Scholar
  24. 24.
    Kaseman DC, Jarvi AG, Gan XY, Saxena S, Millstone JE (2018) Evolution of surface copper(II) environments in Cu2−xSe nanoparticles. Chem Mater 30:7313–7321CrossRefGoogle Scholar
  25. 25.
    Zhao YX, Pan HC, Lou YB, Qiu XF, Zhu JJ, Burda C (2009) Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J Am Chem Soc 131:4253–4261CrossRefGoogle Scholar
  26. 26.
    Lukashev P, Lambrecht WRL, Kotani T, van Schilfgaarde M (2007) Electronic and crystal structure of Cu2−xS: full-potential electronic structure calculations. Phys Rev B Condens Matter Mater Phys 76:195202CrossRefGoogle Scholar
  27. 27.
    Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237CrossRefGoogle Scholar
  28. 28.
    Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrovic A, Volbers D, Wyrwich R, Döblinger M, Susha AS, Rogach AL, Jäckel F, Stolarczyk JK, Feldmann J (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13:1013–1018CrossRefGoogle Scholar
  29. 29.
    Jain PK, Manthiram K, Engel JH, White SL, Faucheaux JA, Alivisatos AP (2013) Doped nanocrystals as plasmonic probes of redox chemistry. Angew Chem Int Ed 52:13671–13675CrossRefGoogle Scholar
  30. 30.
    Nørby P, Johnsen S, Iversen BB (2014) In Situ X-ray diffraction study of the formation, growth, and phase transition of colloidal Cu2−xS nanocrystals. ACS Nano 8:4295–4303CrossRefGoogle Scholar
  31. 31.
    Liu Y, Liu MX, Swihart MT (2017) Reversible crystal phase interconversion between covellite CuS and high chalcocite Cu2S nanocrystals. Chem Mater 29:4783–4791CrossRefGoogle Scholar
  32. 32.
    Wang FF, Li Q, Lin L, Peng HL, Liu ZF, Xu DS (2015) Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption. J Am Chem Soc 137:12006–12012CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660CrossRefGoogle Scholar
  34. 34.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164CrossRefGoogle Scholar
  35. 35.
    Chen LH, Li GH (2018) Functions of 1-dodecanethiol in the synthesis and post-treatment of copper sulfide nanoparticles relevant to their photocatalytic applications. ACS Appl Nano Mater 1:4587–4593CrossRefGoogle Scholar
  36. 36.
    Kriegel I, Rodríguez-Fernández J, da Como E, Lutich AA, Szeifert JM, Feldmann J (2011) Tuning the light absorption of Cu1.97S nanocrystals in supercrystal structures. Chem Mater 23:1830–1834CrossRefGoogle Scholar
  37. 37.
    Furube A, Yoshinaga T, Kanehara M, Eguchi M, Teranishi T (2012) Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film. Angew Chem Int Ed 51:2640–2642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.State Key Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations