Advertisement

Journal of Materials Science

, Volume 54, Issue 23, pp 14577–14587 | Cite as

Exceptional elevated temperature behavior of nanocrystalline stoichiometric Y2Fe14B alloys with La or Ce substitutions

  • Xuefeng Liao
  • Jiasheng Zhang
  • Hongya Yu
  • Xichun Zhong
  • Abdul Jabbar Khan
  • Xuan Zhou
  • Hui Zhang
  • Zhongwu LiuEmail author
Metals & corrosion
  • 19 Downloads

Abstract

Considering that both La2Fe14B and Ce2Fe14B compounds exhibit similar weak temperature-dependent anisotropic fields (HA) as Y2Fe14B, this work aims to clarify the elevated temperature behavior of melt-spun nanocrystalline La- or Ce-partially substituted stoichiometric Y2Fe14B alloys containing no critical rare earth elements. The results show that La-substituted (Y1−xLax)2Fe14B alloys (x = 0–0.5) show exceptional elevated temperature behavior, manifested by the increased coercivity with increasing temperature. For the Ce-substituted (Y1−xCex)2Fe14B alloys, only x = 0.1 and 0.2 alloys show the similar trend. Both the temperature coefficient of remanence α and coercivity β can be improved by La-substituted, indicating partial substitution La can effectively enhance the thermal stability of Y2Fe14B alloy. However, excess La or Ce substitution would reduce α and β value, resulting in the deterioration of thermal stability. Highest β values of 0.05 and − 0.08 have been obtained in (Y0.9La0.1)2Fe14B alloy at 300–400 K and (Y0.8La0.2)2Fe14B alloy at 300–500 K, respectively. In addition, Ce substitution can effectively enhance the coercivity of Y2Fe14B alloy at room temperature and La substitution does not show a beneficial effect on the room-temperature magnetic properties. This work is beneficial for developing high-performance/cost ratio permanent magnets based on abundant rare earth elements with superior thermal stability.

Notes

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 51774146) and the Guangzhou Municipal Science and Technology Program (Grant No. 201707010161).

References

  1. 1.
    Skokov KP, Gutfleisch O (2018) Heavy rare earth free, free rare earth and rare earth free magnets-Vision and reality. Scr Mater 154:289–294CrossRefGoogle Scholar
  2. 2.
    Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842CrossRefGoogle Scholar
  3. 3.
    Coey JMD (2011) Hard magnetic materials: a perspective. IEEE Trans Magn 47:4671–4681CrossRefGoogle Scholar
  4. 4.
    Sugimoto S (2011) Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 44:064001CrossRefGoogle Scholar
  5. 5.
    Handstein A, Schneider J, Müller KH, Krewenka R, Grössinger R, Kirchmayr HR (1990) Temperature dependence of magnetic properties of sintered Nd-Fe-B magnets modified with Dy. J Magn Magn Mater 83:199–200CrossRefGoogle Scholar
  6. 6.
    Chen W, Luo JM, Guan YW, Huang YL, Chen M, Hou YH (2018) Grain boundary diffusion of Dy films prepared by magnetron sputtering for sintered Nd-Fe-B magnets. J Phys D Appl Phys 51:185001CrossRefGoogle Scholar
  7. 7.
    Li R, Zhang HR, Liu Y, Zuo SL, Xiong JF, Zuo WL, Zhao TY, Hu FX, Sun JR, Shen BG (2018) Temperature stability of coercivity in mischmetal-Fe-Co-B melt-spun ribbons. Mater Res Express 5:056101CrossRefGoogle Scholar
  8. 8.
    Zhang JS, Zhao LZ, Liao XF, Zeng HX, Peng DR, Yu HY, Zhong XC, Liu ZW (2019) Suppressing the CeFe2 phase formation and improving the coercivity and thermal stability of Ce-Fe-B alloys by Si substitution. Intermetallics 107:75–80CrossRefGoogle Scholar
  9. 9.
    FanX Chen K, Guo S, Chen R, Lee D, Yan A, You C (2017) Core-shell Y-substituted Nd-Ce-Fe-B sintered magnets with enhanced coercivity and good thermal stability. Appl Phys Lett 110:172405CrossRefGoogle Scholar
  10. 10.
    Yan C, Guo S, Chen L, Chen R, Liu J, Lee D, Yan A (2016) Enhanced temperature stability of coercivity in sintered permanent magnet by substitution of Ce for didymium. IEEE Trans Magn 52:1–4Google Scholar
  11. 11.
    Tang W, Wu YQ, Dennis KW, Oster NT, Kramer MJ, Anderson IE, McCallum RW (2011) Studies of microstructure and magnetic properties in sintered mixed rare earth (MRE)-Fe-B magnets (MRE = Nd + La + Dy). J Appl Phys 109:07A704CrossRefGoogle Scholar
  12. 12.
    Grössinger R, Sun XK, Eibler R, Buschow KHJ, Kirchmayr HR (1986) Temperature dependence of anisotropy fields and initial susceptibilities in R2Fe14B compounds. J Magn Magn Mater 58:55–60CrossRefGoogle Scholar
  13. 13.
    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M (1985) Single crystal measurements of anisotropy constants of R2Fe14B (R = Y, Ce, Pr, Nd, Gd, Tb, Dy and Ho). Jpn J Appl Phys 24:803–805CrossRefGoogle Scholar
  14. 14.
    Liu Z, Qian D, Zeng D (2012) Reducing Dy Content by Y Substitution in nanocomposite NdFeB alloys with enhanced magnetic properties and thermal stability. IEEE Trans Magn 48:2797–2799CrossRefGoogle Scholar
  15. 15.
    Liao XF, Zhao LZ, Zhang JS, Ahmed G, Khan AJ, Zeng HX, Yu HY, Zhong XC, Liu ZW, Zhang GQ (2019) Clarifying the basic phase structure and magnetic behavior of directly quenched (Ce, La)2Fe14B alloys with various Ce/La ratios. Curr Appl Phys 19:733–738CrossRefGoogle Scholar
  16. 16.
    Tang W, Dennis KW, Kramer MJ, Anderson IE, McCallum RW (2005) New YDy-based R2(Fe, Co)14B melt-spun magnets (R = Y+Dy + Nd). Mater Sci Forum 475:2155–2160CrossRefGoogle Scholar
  17. 17.
    Ding G, Guo S, Cai L, Chen L, Yan C, Lee D, Yan A (2015) Enhanced thermal stability of Nd-Fe-B sintered magnets by intergranular doping Y72Co28 alloys. IEEE Trans Magn 51:1–4Google Scholar
  18. 18.
    Peng B, Ma T, Zhang Y, Jin J, Yan M (2017) Improved thermal stability of Nd-Ce-Fe-B sintered magnets by Y substitution. Scr Mater 131:11–14CrossRefGoogle Scholar
  19. 19.
    Herbst JF (1991) R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 63:819–898CrossRefGoogle Scholar
  20. 20.
    Callen E (1982) The magnetic anisotropy phase diagram of R2(Co1−xFex)17 compounds. Phys B + C 114:71–76Google Scholar
  21. 21.
    Liu ZW, Huang HY, Gao XX, Yu HY, Zhong XC, Zhu J, Zeng DC (2011) Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation. J Phys D Appl Phys 44:025003CrossRefGoogle Scholar
  22. 22.
    Xu XD, Sepehri-Amin H, Sasaki TT, Soderžnik M, Tang X, Ohkubo T, Hono K (2019) Comparison of coercivity and squareness in hot-deformed and sintered magnets produced from a Nd-Fe-B-Cu-Ga alloy. Scr Mater 160:9–14CrossRefGoogle Scholar
  23. 23.
    Xie J, Yuan C, Luo Y, Yang Y, Hu B, Yu D, Yan W (2018) Coercivity enhancement and thermal-stability improvement in the melt-spun NdFeB ribbons by grain boundary diffusion. J Magn Magn Mater 446:210–213CrossRefGoogle Scholar
  24. 24.
    Brown DN, Lau D, Chen Z (2016) Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets. AIP Adv 6:056019CrossRefGoogle Scholar
  25. 25.
    Chen ZM, Wu YQ, Kramerb MJ, Smitha BR, Ma BM, Huang MQ (2004) A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets. J Magn Magn Mater 268:105–113CrossRefGoogle Scholar
  26. 26.
    Liao XF, Zhao LZ, Zhang JS, Zhong XC, Jiao DL, Liu ZW (2018) Enhanced formation of 2:14:1 phase in La-based rare earth-iron-boron permanent magnetic alloys by Nd substitution. J Magn Magn Mater 464:31–35CrossRefGoogle Scholar
  27. 27.
    Sepehri-Amin H, Prabhu D, Hayashi M, Ohkubo T, Hioki K, Hattori A, Hono K (2013) Coercivity enhancement of rapidly solidified Nd-Fe-B magnet powders. Scr Mater 68:167–170CrossRefGoogle Scholar
  28. 28.
    Li R, Shang RX, Xiong JF, Liu D, Kuang H, Zuo WL, Zhao TY, Sun JR, Shen BG (2017) Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets. AIP Adv 7:056207CrossRefGoogle Scholar
  29. 29.
    Hussain H, Liu J, Zhao LZ, Zhong XC, Zhang GQ, Liu ZW (2016) Composition related magnetic properties and coercivity mechanism for melt spun [(La0.5Ce0.5)1−xREx]10Fe84B6 (RE = Nd or Dy) nanocomposite alloys. J Magn Magn Mater 399:26–31CrossRefGoogle Scholar
  30. 30.
    Jiang Q, Zhong M, Lei W, Zeng Q, Hu Y, Quan Q, Xu Y, Hu X, Zhang L, Liu R (2017) Effect of Ga addition on the valence state of Ce and magnetic properties of melt-spun Ce17Fe78−xB6Gax (x = 0–1.0) ribbons. AIP Adv 7:085013CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations