Fabrication of black TiO2/TiO2 homojunction for enhanced photocatalytic degradation

  • Zhiming Miao
  • Guanlong Wang
  • Lujie Li
  • Cong Wang
  • Xiufang ZhangEmail author
Chemical routes to materials


Photocatalysis is a promising technology for removing contaminant in water. However, the rapid recombination of photogenerated charge carriers limits the performance of photocatalysis in water treatment. Here, a novel light response B/W-TiO2 homojunction catalyst based on the black TiO2 (B-TiO2) and TiO2 (W-TiO2) was successfully synthesized by a facile hydrothermal method. The mass ratio of B-TiO2 to W-TiO2 was tuned to study its effect on homojunction formation and photocatalytic performance. Beneficial from the band difference between B-TiO2 and W-TiO2, the conduction band (CB) electrons of W-TiO2 can migrate to the CB of B-TiO2 and the valence band (VB) holes of B-TiO2 transfer to the VB of W-TiO2, hence effectively promoting the separation of photogenerated charge carriers. The formation of homojunction can dramatically improve the photocatalytic ability of B/W-TiO2; the kinetic constant of rhodamine B degradation of B/W-TiO2 with optimal mass ratio is nearly 3.9 and 5.2 times higher than that of B-TiO2 and W-TiO2, respectively. Moreover, the superoxide radical (O 2 ·− ) and hydroxyl radicals (·OH) species play a crucial role in the photodegradation process. The enhancement of photocatalytic activity is attributed to the construction of B/W-TiO2 homojunction, which is beneficial to improve the separation efficiency of photogenerated electron–holes.



We thank the financial supported from the Natural Science Foundation of China (No. 21577008) and the Natural Science Foundation of China (No. 21878031).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3900_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1921 kb)


  1. 1.
    Zhang LW, Zhu YF (2012) A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catal Sci Technol 29:694–706CrossRefGoogle Scholar
  2. 2.
    Yao YR, Huang WZ, Zhou H (2014) A novel Fe3O4@SiO2@BiOBr photocatalyst with highly active visible light photocatalytic properties. Mater Chem Phys 148:896–902CrossRefGoogle Scholar
  3. 3.
    Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251CrossRefGoogle Scholar
  4. 4.
    Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K, Lai Y, Al-Deyab SS (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801CrossRefGoogle Scholar
  5. 5.
    Liu G, Wang L, Yang H, Cheng H, Lu GQ (2010) Titania-based photocatalysts-crystal growth, doping and heterostructuring. J Mater Chem A 20:831–843CrossRefGoogle Scholar
  6. 6.
    Yang S, Su H, Hou J, Luo W, Zou D, Zhu Q, Dai J (2017) The effects of transition-metal doping and chromophore anchoring on the photocurrent response of titanium-oxo-clusters. Dalton Trans 46:9639–9645CrossRefGoogle Scholar
  7. 7.
    Yum J, Walter P, Huber S, Rentsch D, Geiger T, Nüesch F, De Angelis F, Gratzel M, Nazeeruddin MK (2007) Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J Am Chem Soc 129:10320–10321CrossRefGoogle Scholar
  8. 8.
    Li Q, Xie R, Li Y, Mintz E, Shang J (2007) Enhanced visible-light induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide. Environ Sci Technol 41:5050–5056CrossRefGoogle Scholar
  9. 9.
    Zhu LY, Li H, Liu ZR, Xia PF, Xie YH, Xiong DH (2018) Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. J Phys Chem C 122:9531–9539CrossRefGoogle Scholar
  10. 10.
    Wang SC, Yun JH, Luo B, Butburee T, Peerakiatkhajohn P, Thaweesak S, Xiao M, Wang LZ (2017) Recent progress on visible light responsive heterojunctions for photocatalytic applications. J Mater Sci Technol 33:1–22CrossRefGoogle Scholar
  11. 11.
    Kim JY, Jang YJ, Park JW, Kim JH, Kang JS, Chung DY, Sung YE, Lee CH, Lee JS, Ko MJ (2018) Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy-conversion. Appl Catal B 227:409–417CrossRefGoogle Scholar
  12. 12.
    Zhou M, Wang SB, Yang PJ, Huang CJ, Wang XC (2018) Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal 8:4928–4936CrossRefGoogle Scholar
  13. 13.
    Longoni G, Pena Cabrera RL, Polizzi S, D’Arienzo M, Mari CM, Cui Y, Ruffo R (2017) Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: the role of different exposed crystal facets on the electrochemical properties. Nano Lett 17:992–1000CrossRefGoogle Scholar
  14. 14.
    Parida K, Sahu N, Tripathi A, Kamble V (2010) Gold promoted S, N-doped TiO2: an efficient catalyst for CO adsorption and oxidation. Environ Sci Technol 44:4155–4160CrossRefGoogle Scholar
  15. 15.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  16. 16.
    Wang J, Ruan H, Li W, Li D, Hu Y, Chen J, Zheng Y (2012) Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation. J Phys Chem C 116:13935–13943CrossRefGoogle Scholar
  17. 17.
    Li HJ, Zhou Y, Tu WG, Ye JH, Zou ZG (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013CrossRefGoogle Scholar
  18. 18.
    Lü XJ, Chen AP, Luo YK (2011) Conducting interface in oxide homojunction: understanding of superior properties in black TiO2. Nano Lett 16:5751–5755CrossRefGoogle Scholar
  19. 19.
    Jiang TF, Xie TF, Yang W, Chen LP, Fan HM, Wang DJ (2013) Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 117:4619–4624CrossRefGoogle Scholar
  20. 20.
    Sun YY, Wang WZ, Zhang L, Zhang ZJ (2012) Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity. Chem Eng J 211:161–167CrossRefGoogle Scholar
  21. 21.
    Pei Z, Ding L, Lin H, Weng S, Zheng Z, Hou Y, Liu P (2013) Facile synthesis of defect-mediated TiO2-x with enhanced visible light photocatalytic activity. J Mater Chem A 1:10099–10102CrossRefGoogle Scholar
  22. 22.
    Alberto N, Mattia A, Saveria S, Marcello M, Filippo F, Serena C, Claudia LB, Rinaldo P, Vladimiro DS (2012) The effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603CrossRefGoogle Scholar
  23. 23.
    Chen SL, Tao J, Tao HJ, Wang C, Shen YZ, Jiang JJ, Zhu LM, Zeng XF, Wang T (2016) One-step solvothermal synthesis of black TiO2 films for enhanced visible absorption. J Nanosci Nanotechnol 16:3146–3149CrossRefGoogle Scholar
  24. 24.
    Song H, Li CX, Lou ZR, Ye ZZ, Zhu LP (2017) Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustain Chem Eng 5:8982–8987CrossRefGoogle Scholar
  25. 25.
    Hu MQ, Cao Y, Li ZZ, Yang SL, Xing ZP (2017) Ti3+ self-doped mesoporous black TiO2/SiO2 nanocomposite as remarkable visible light photocatalyst. Appl Surf Sci 426:734–744CrossRefGoogle Scholar
  26. 26.
    Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang KF, Wang L, Fu HG, Zhao DY (2014) Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 136:9280–9283CrossRefGoogle Scholar
  27. 27.
    Li HZ, Sun BJ, Yang F (2019) Homojunction and defect synergy-mediated electron-hole separation for solar-driven mesoporous rutile/anatase TiO2 microsphere photocatalysts. RSC Adv 9:7870–7877CrossRefGoogle Scholar
  28. 28.
    Shah MW, Zhu YQ, Fan XY (2015) Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep 5:1–8Google Scholar
  29. 29.
    Lin J, Lin Y, Liu P, Meziani MJ, Allard LF, Sun YP (2002) Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. J Am Chem Soc 124:11514–11518CrossRefGoogle Scholar
  30. 30.
    Jiang Y, Chen WF, Koshy P, Sorrell CC (2013) Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping. J Mater Sci 7:5266–5279Google Scholar
  31. 31.
    Song H, Li CX, Lou ZR, Ye ZZ, Zhu LP (2017) Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustain Chem Eng 5:8982–8987CrossRefGoogle Scholar
  32. 32.
    Tim L, Roozbeh P, Perry E, Harish K, Robert AV, Frank G (2013) Photocatalytic activity of hydrogenated TiO2. ACS Appl Mater Interfaces 5:1892–1895CrossRefGoogle Scholar
  33. 33.
    Konstantinou IK, Albanis TA (2014) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14CrossRefGoogle Scholar
  34. 34.
    Zhang LW, Man Y, Zhu YF (2011) Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal 1:841–848CrossRefGoogle Scholar
  35. 35.
    Friedmann D, Mendive C, Bahnemann D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B Environ 99:398–406CrossRefGoogle Scholar
  36. 36.
    Parmar KP, Kang HJ, Bist A, Dua P, Jang JS, Lee JS (2012) Photocatalytic and Photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. Chemsuschem 5:1926–1934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalianChina

Personalised recommendations