Advertisement

Investigation of electrohydrodynamic atomization (electrospraying) parameters’ effect on formation of poly(lactic acid) nanoparticles

  • Hatice IbiliEmail author
  • Mehmet Dasdemir
Polymers & biopolymers
  • 24 Downloads

Abstract

The aim of this study was to develop nanoparticles via electrohydrodynamic atomization (electrospraying) method. These nanoparticles have potential applications such as drug delivery and manipulating surface functionality. Electrosprayed nanoparticles were produced from poly(lactic acid) (PLA). Solution and process parameters were investigated for optimization of the electrospraying process. Different PLA concentrations, solvent types and solvent ratios were investigated as part of the study. The characterization of the electrosprayed solutions was carried out via viscosity, conductivity and surface tension measurements. Also, the effect of process parameters (flow rate, needle to collector distance, electrical field, application time and needle dimension) on particle morphology and dimension was investigated. After the formation of PLA nanoparticles, morphological and dimensional characteristics were analyzed through SEM images and nanosizer measurements. According to some of our findings, particle size increases with higher polymer concentrations and flow rates. Also, increase in electrostatic field and distance result in smaller particle size because of increase in coulombic forces. But a further increase in coulombic forces triggers increase in size of particles and fibril formation with a bimodal distribution. The smallest size and the narrowest distribution were obtained for the smallest inner needle diameter. Deposition time does not have a significant influence on the produced particle sizes and their distributions; it only affects the production amount. As a result of this study, desired monodisperse PLA nanoparticles with comparatively smaller size were successfully achieved. Also, the detailed investigation of electrospraying parameters can be useful for future studies.

Notes

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This study was fully supported by the Scientific and Technological Research Council of Turkey (TUBITAK-MAG-113M517).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ong YT, Tan SH (2017) Carbon nanotube-based biodegradable polymeric nanocomposites: 3Rs (reduce, reuse, and recycle) in the design. In: Torres-Martinez LM et al (eds) Handbook of ecomaterials. Springer, Basingstoke, pp 1–17Google Scholar
  2. 2.
    Kannan MB (2015) Biodegradable polymeric coatings for surface modification of magnesium-based biomaterials. In: Park IS, Sankara Narayanan TSN (eds) Surface modification of magnesium and its alloys for biomedical applications. Woodhead Publishing, Sawston, pp 355–376CrossRefGoogle Scholar
  3. 3.
    Averous L (2013) Synthesis, properties, environmental and biomedical applications of polylactic acid. In: Ebnesajjad S (ed) Handbook of biopolymers and biodegradable plastics. Elsevier, Amsterdam, pp 171–188CrossRefGoogle Scholar
  4. 4.
    Ikeuchi M, Tane R, Ikuta K (2012) Electrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering. Biomed Microdevice 14:35–43CrossRefGoogle Scholar
  5. 5.
    Mark JE (2009) Polymer data handbook. Oxford University Press, Oxford, pp 627–635Google Scholar
  6. 6.
    Dong Y, Feng SS (2004) Methoxy poly (ethylene glycol)-poly (lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25(14):2843–2849CrossRefGoogle Scholar
  7. 7.
    Palaskar SS, Desai AN, Shukla SR (2016) Development of multifunctional cotton fabric using atmospheric pressure plasma and nano-finishing. J Text I 107(3):405–412CrossRefGoogle Scholar
  8. 8.
    Mohanraj VJ, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573Google Scholar
  9. 9.
  10. 10.
    Jaworek ATSA, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66(3):197–219CrossRefGoogle Scholar
  11. 11.
    Jaworek A, Krupa A, Lackowski M et al (2009) Nanocomposite fabric formation by electrospinning and electrospraying technologies. J Electrostat 67(2–3):435–438CrossRefGoogle Scholar
  12. 12.
    Smith DP (1986) The electrohydrodynamic atomization of liquids. IEEE Trans Ind Appl 3:527–535CrossRefGoogle Scholar
  13. 13.
    Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37(11):1510–1551CrossRefGoogle Scholar
  14. 14.
    Chang MW, Stride E, Edirisinghe M (2010) Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. J R Soc Interface 7(4):451–460Google Scholar
  15. 15.
    Chiumiento AB, Yadav A, Perry BD, Karam EC, Coffey GT, Zeb JT, Perry J (2010) Production of a liquid microjet. Ph.D. Dissertation, Worcester Polytechnic InstituteGoogle Scholar
  16. 16.
    Xie J, Wang CH (2007) Electrospray in the dripping mode for cell microencapsulation. J Colloid Interface Sci 312(2):247–255CrossRefGoogle Scholar
  17. 17.
    Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B (1999) Electrohydrodynamic atomization in the cone–jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 30(7):823–849CrossRefGoogle Scholar
  18. 18.
    Lastow O, Balachandran W (2007) Novel low voltage EHD spray nozzle for atomization of water in the cone jet mode. J Electrostat 65(8):490–499CrossRefGoogle Scholar
  19. 19.
    Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M, Tanioka A (2006) Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J Polym Sci B 44(5):779–786CrossRefGoogle Scholar
  20. 20.
    Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang CH (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 125:32–57CrossRefGoogle Scholar
  21. 21.
    Yeo LY, Gagnon Z, Chang HC (2005) AC electrospray biomaterials synthesis. Biomaterials 26(31):6122–6128CrossRefGoogle Scholar
  22. 22.
    Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38(1):21–33CrossRefGoogle Scholar
  23. 23.
    Graham K, Schreuder-Gibson H, Gogins M (2003) Incorporation of electrospun nanofibers into functional structures. In: INTC conference on technical association of the pulp & paper industry, Baltimore, 15–18 SeptemberGoogle Scholar
  24. 24.
    Marin AG, Loscertales IG, Barrero A (2012) Surface tension effects on submerged electrosprays. Biomicrofluidics 6(4):044104CrossRefGoogle Scholar
  25. 25.
    Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A 345(1–3):202–210CrossRefGoogle Scholar
  26. 26.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polym J 43(16):4403–4412CrossRefGoogle Scholar
  27. 27.
    Li Z, Wang C (2013) Effects of working parameters on electrospinning. In: Wang ZM (ed) One dimensional nanostructures. Springer, Berlin, pp 15–28CrossRefGoogle Scholar
  28. 28.
    Kostakova E, Zemanova E, Mikes P, Soukupova J, Matheisova H, Klouda K (2012) Electrospinning and electrospraying of polymer solutions with spherical fullerenes. In: Conference on NANOCON, Brno, 23–25 OctoberGoogle Scholar
  29. 29.
    Fantini D, Zanetti M, Costa L (2006) Polystyrene microspheres and nanospheres produced by electrospray. Macromol Rapid Commun 27(23):2038–2042CrossRefGoogle Scholar
  30. 30.
    Arya V, Komal R, Kaur M, Goyal A (2011) Silver nanoparticles as a potent antimicrobial agent: a review. Pharmacologyonline 3:118–124Google Scholar
  31. 31.
    Islam MT, Jing H, Yang T, Zubia E et al (2018) Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. J Environ Chem Eng 6(4):3827–3836CrossRefGoogle Scholar
  32. 32.
    Xu Y, Hanna MA (2006) Electrospray encapsulation of water-soluble protein with polylactide: effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm 320(1):30–36CrossRefGoogle Scholar
  33. 33.
    Gomez-Pachon EY, Vera-Graziano R, Campos RM (2014) Structure of poly (lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf Ser Mater Sci Eng 59(1):012003CrossRefGoogle Scholar
  34. 34.
    McCullen SD, Stano KL, Stevens DR, Roberts WA, Monteiro-Riviere NA, Clarke LI, Gorga RE (2007) Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J Appl Polym Sci 105(3):1668–1678CrossRefGoogle Scholar
  35. 35.
    Li D, Frey MW, Baeumner AJ (2006) Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. J Membr Sci 279(1–2):354–363CrossRefGoogle Scholar
  36. 36.
    Kayaci F, Umu OC, Tekinay T, Uyar T (2013) Antibacterial electrospun poly (lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61(16):3901–3908CrossRefGoogle Scholar
  37. 37.
    Shams T, Parhizkar M, Illangakoon UE, Orlu M, Edirisinghe M (2017) Core/shell microencapsulation of indomethacin/paracetamol by co-axial electrohydrodynamic atomization. Mater Des 136:204–213CrossRefGoogle Scholar
  38. 38.
    Parhizkar M, Reardon PJ, Knowles JC, Browning RJ, Stride E, Barbara PR, Edirisinghe M (2016) Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery. Nanomed Nanotechnol 12(7):1919–1929CrossRefGoogle Scholar
  39. 39.
    Chang MW, Stride E, Edirisinghe M (2010) Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. J R Soc Interface 7(4):S451–S460Google Scholar
  40. 40.
    Ekemen Z, Ahmad Z, Edirisinghe M, Stride E (2011) Forming of protein bubbles and porous films using co-axial electrohydrodynamic flow processing. Macromol Mater Eng 296(1):8–13CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Yang Z, Yin D, Liu Y, Fei C, Xiong R, Yan G (2010) Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater 322(21):3470–3475CrossRefGoogle Scholar
  42. 42.
    Dasdemir M, Ibili H (2017) Formation and characterization of superhydrophobic and alcohol-repellent nonwovens via electrohydrodynamic atomization (electrospraying). J Ind Text 47(1):125–146CrossRefGoogle Scholar
  43. 43.
    Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  44. 44.
    Kulicke WM, Clasen C (2004) Viscosimetry of polymers and polyelectrolytes. Springer, BerlinCrossRefGoogle Scholar
  45. 45.
    Sun B, Duan B, Yuan X (2006) Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. J Appl Polym Sci 102(1):39–45CrossRefGoogle Scholar
  46. 46.
    Haghi AK (2012) Electrospinning of nanofibers in textiles. CRC Press, FloridaGoogle Scholar
  47. 47.
    Brown P, Stevens K (2007) Nanofibers and nanotechnology in textiles. Elsevier, AmsterdamCrossRefGoogle Scholar
  48. 48.
    Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A (2003) Poly-l-lactide nanofibers by electrospinning–Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. E Polym 3(1):102–110Google Scholar
  49. 49.
    Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, Park WH (2004) Effect of organosoluble salts on the nanofibrous structure of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol 34(4):249–256CrossRefGoogle Scholar
  50. 50.
    Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polym J 55(18):4728–4737CrossRefGoogle Scholar
  51. 51.
    Gunesoglu C, Gunesoglu S, Wei S, Guo Z (2011) Electrical conduction investigation of stainless steel wire-reinforced cotton fabric composites by electrospraying of fluoropolymer. J Text I 102(5):434–441CrossRefGoogle Scholar
  52. 52.
    Zhang L, Huang J, Si T, Xu RX (2012) Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices 9(6):595–612CrossRefGoogle Scholar
  53. 53.
    Deitzel JM, Kleinmeyer J, Harris DEA, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polym J 42(1):261–272CrossRefGoogle Scholar
  54. 54.
    Xie J, Ng WJ, Lee LY, Wang CH (2008) Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interface Sci 317(2):469–476CrossRefGoogle Scholar
  55. 55.
    Mituppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205(17):2327–2338CrossRefGoogle Scholar
  56. 56.
    Yuya N, Kai W, Kim BS, Kim IS (2010) Morphology controlled electrospun poly (vinyl pyrrolidone) fibers: effects of organic solvent and relative humidity. J Mater Sci Eng Adv Technol 2:97–112Google Scholar
  57. 57.
    Teo WE, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12(1):013002CrossRefGoogle Scholar
  58. 58.
    Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F (2003) Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polym J 44(19):5721–5727CrossRefGoogle Scholar
  59. 59.
    Chowdhury M, Stylios G (2010) Effect of experimental parameters on the morphology of electrospun nylon 6 fibres. Int J Basic Appl Sci 10(06):116–131Google Scholar
  60. 60.
    Ramakrishnan R, Gimbun J, Samsuri F, Narayanamurthy V, Gajendran N, Lakshmi YS, Stranska D, Ranganathan B (2016) Needleless electrospinning technology-an entrepreneurial perspective. Indian J Sci Technol 9(15):1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tekstil Mühendisliği BölümüGaziantep ÜniversitesiŞehitkamilTurkey

Personalised recommendations