Effect of proton irradiation on anatase TiO2 nanotube anodes for lithium-ion batteries

  • Kassiopeia A. Smith
  • Andreas I. Savva
  • Keyou S. Mao
  • Yongqiang Wang
  • Dmitri A. Tenne
  • Di Chen
  • Yuzi Liu
  • Pete Barnes
  • Changjian Deng
  • Darryl P. Butt
  • Janelle P. WharryEmail author
  • Hui XiongEmail author
Energy materials


The role of defects in the charge transfer and transport properties of electrode materials for lithium-ion batteries has recently garnered increased interest. It is widely recognized that ion irradiation promotes the formation of defects within a crystalline solid. Among all ion species used for irradiation, protons are expected to create primarily simple Frenkel pair point defects without significantly changing the stoichiometry of the damaged region of the target material. This work investigates the effect of proton irradiation at varying temperatures on the electrochemical properties of anatase TiO2 nanotube (TiO2-NT) electrode for lithium-ion battery applications. Anatase TiO2-NTs are irradiated at both room temperature (25 °C) and 250 °C and compared with non-irradiated control specimens. Characterization by Raman spectroscopy and XRD suggests that the irradiation at both temperatures does not alter the long-range order of the nanotubes. However, high-resolution TEM reveals that defect clusters are formed upon irradiation and increase in size with increasing temperature. Both irradiated samples exhibit increased capacity and enhanced rate capability compared with the non-irradiated control, which can be explained by increased storage sites as well as improved Li+ diffusivity due to the presence of irradiation-induced defects. This study presents a unique perspective on pathways to engineer functional nanostructured electrode materials by tailoring irradiation conditions.



The authors acknowledge support by the National Science Foundation under Grant Nos. DMR-1408949, DMR-1838604, and DMR-1838605. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. The authors thank A. E. Weltner and P. J. Simmonds for the assistance with the electrical conductivity measurements. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author contributions

HX designed all experiments. JW and DB designed the ion irradiation experiments. KS and AS prepared the electrodes and conducted electrochemical measurements. KS and DT conducted Raman characterization. YW and DC conducted the proton irradiation experiments. KM and YL conducted TEM and SAED. CD conducted SAED analysis. PB carried out some electrochemical measurements. KS, HX, and JW analyzed the data. All authors discussed the results and contributed to the manuscript preparation. KS, HX, and JW wrote the manuscript.

Supplementary material

10853_2019_3825_MOESM1_ESM.docx (104 kb)
Supplementary material 1 (DOCX 105 kb)


  1. 1.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  2. 2.
    Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837CrossRefGoogle Scholar
  3. 3.
    Yang ZG, Choi D, Kerisit S et al (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192:588–598CrossRefGoogle Scholar
  4. 4.
    Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652–6667CrossRefGoogle Scholar
  5. 5.
    Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr Sect B Struct Sci 47:462–468CrossRefGoogle Scholar
  6. 6.
    Zachauchristiansen B, West K, Jacobsen T, Atlung S (1988) Lithium insertion in different TiO2 modifications. Solid State Ionics 28:1176–1182CrossRefGoogle Scholar
  7. 7.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  8. 8.
    Chen JS, Tan YL, Li CM et al (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRefGoogle Scholar
  9. 9.
    Kavan L, Kalbac M, Zukalova M et al (2004) Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem Mater 16:477–485CrossRefGoogle Scholar
  10. 10.
    Maier J (2007) Size effects on mass transport and storage in lithium batteries. J Power Sources 174:569–574CrossRefGoogle Scholar
  11. 11.
    Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638CrossRefGoogle Scholar
  12. 12.
    Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327CrossRefGoogle Scholar
  13. 13.
    Wang Y, Cao GZ (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRefGoogle Scholar
  14. 14.
    Yuan Y, Chen F, Cai G et al (2019) Ultrafine TiO2 nanocrystalline anchored on nitrogen-doped amorphous mesoporous hollow carbon nanospheres as advanced anode for lithium ion batteries. Electrochim Acta 296:669–675CrossRefGoogle Scholar
  15. 15.
    Li J, Li Y, Lan Q, Yang Z, Lv X-J (2019) Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. J Power Sources 423:166–173CrossRefGoogle Scholar
  16. 16.
    Ma Y, Li Y, Li D, Liu Y, Zhang J (2019) Uniformly distributed TiO2 nanorods on reduced graphene oxide composites as anode material for high rate lithium ion batteries. J Alloys Compd 771:885–891CrossRefGoogle Scholar
  17. 17.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  18. 18.
    Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater 21:63–67CrossRefGoogle Scholar
  19. 19.
    Smith KA, Savva AI, Deng C et al (2017) Effects of proton irradiation on structural and electrochemical charge storage properties of TiO2 nanotube electrodes for lithium-ion batteries. J Mater Chem A 5:11815–11824CrossRefGoogle Scholar
  20. 20.
    Xiong H, Yildirim H, Podsiadlo P et al (2013) Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure. Phys Rev Lett 110:078304CrossRefGoogle Scholar
  21. 21.
    Hahn BP, Long JW, Rolison DR (2013) Something from nothing: enhancing electrochemical charge storage with cation vacancies. Acc Chem Res 46:1181–1191CrossRefGoogle Scholar
  22. 22.
    Koo B, Chattopadhyay S, Shibata T et al (2013) Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 25:245–252CrossRefGoogle Scholar
  23. 23.
    Koo B, Xiong H, Slater MD et al (2012) Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett 12:2429–2435CrossRefGoogle Scholar
  24. 24.
    Savva AI, Smith KA, Lawson M et al (2018) Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Phys Chem Chem Phys 20:22537–22546CrossRefGoogle Scholar
  25. 25.
    Devanathan R (2009) Radiation damage evolution in ceramics. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267:3017–3021CrossRefGoogle Scholar
  26. 26.
    Kinoshita C (1991) Characteristics of microstructural evolution of radiation-damage in ceramics under fusion environment. J Nucl Mater 179:53–59CrossRefGoogle Scholar
  27. 27.
    Zinkle SJ, Kinoshita C (1997) Defect production in ceramics. J Nucl Mater 251:200–217CrossRefGoogle Scholar
  28. 28.
    Leteurtre J, Soullard J (1973) Irradiation effects in amorphous ZrO2. Irradiat Eff 20:175–180CrossRefGoogle Scholar
  29. 29.
    Meldrum A, Boatner LA, Ewing RC (1997) Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J Mater Res 12:1816–1827CrossRefGoogle Scholar
  30. 30.
    Yu N, Nastasi M (1995) Ion beam induced epitaxial recrystallization of alumina thin films deposited on sapphire. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 106:579–582CrossRefGoogle Scholar
  31. 31.
    Naguib HM, Kelly R (1970) The crystallization of amorphous ZrO2 by thermal heating and by ion bombardment. J Nucl Mater 35:293–305CrossRefGoogle Scholar
  32. 32.
    Zhang L, Jiang W, Ai W, Chen L, Wang T (2018) Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures. J Nucl Mater 505:249–254CrossRefGoogle Scholar
  33. 33.
    Zhou J, Yao T, Cao D, Lian J, Lu F (2018) In-situ TEM study of radiation-induced amorphization and recrystallization of hydroxyapatite. J Nucl Mater 512:307–313CrossRefGoogle Scholar
  34. 34.
    Jencic I, Bench MW, Robertson IM, Kirk MA (1995) Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J Appl Phys 78:974–982CrossRefGoogle Scholar
  35. 35.
    Hollar EP, Robertson IM, Jenčič I (2000) Crystallization of isolated amorphous zones in semiconductor materials. MRS Online Proc Libr 647:R9.4.1/O14.4.1–R9.4.6/O14.4.6Google Scholar
  36. 36.
    Toulemonde M, Dufour C, Paumier E (1992) Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys Rev B 46:14362–14369CrossRefGoogle Scholar
  37. 37.
    Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 166:903–912CrossRefGoogle Scholar
  38. 38.
    Weber WJ (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 166:98–106CrossRefGoogle Scholar
  39. 39.
    Zinkle SJ (1996) Irradiation spectrum and ionization-induced diffusion effects in ceramics. MRS Proc 439:667–678Google Scholar
  40. 40.
    Backman M, Djurabekova F, Pakarinen OH et al (2012) Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica. J Phys D Appl Phys 45(50):505305CrossRefGoogle Scholar
  41. 41.
    Backman M, Djurabekova F, Pakarinen OH et al (2013) Atomistic simulations of MeV ion irradiation of silica. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 303:129–132CrossRefGoogle Scholar
  42. 42.
    Liu P, Zhang Y, Xue H et al (2016) A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate. Acta Mater 105:429–437CrossRefGoogle Scholar
  43. 43.
    Ridgway MC, Djurabekova F, Nordlund K (2015) Ion-solid interactions at the extremes of electronic energy loss: examples for amorphous semiconductors and embedded nanostructures. Curr Opin Solid State Mater Sci 19:29–38CrossRefGoogle Scholar
  44. 44.
    Smith KA, Savva AI, Wu YQ et al (2018) Effects of intermediate energy heavy-ion irradiation on the microstructure of rutile TiO2 single crystal. J Am Ceram Soc 101:4357–4366CrossRefGoogle Scholar
  45. 45.
    Zhang YW, Sachan R, Pakarinen OH et al (2015) Ionization-induced annealing of pre-existing defects in silicon carbide. Nat Commun 6:8049CrossRefGoogle Scholar
  46. 46.
    Zarkadoula E, Xue HZ, Zhang YW, Weber WJ (2016) Synergy of inelastic and elastic energy loss: temperature effects and electronic stopping power dependence. Scr Mater 110:2–5CrossRefGoogle Scholar
  47. 47.
    Shukur HA, Sato M, Nakamura I, Takano I (2012) Characteristics and photocatalytic properties of thin film prepared by sputter deposition and post-N+ ion implantation. Adv Mater Sci Eng 2012:1–7CrossRefGoogle Scholar
  48. 48.
    Lumpkin GR, Smith KL, Blackford MG et al (2008) Experimental and atomistic modeling study of ion irradiation damage in thin crystals of theTiO2 polymorphs. Phys Rev B Condens Matter 77:214201CrossRefGoogle Scholar
  49. 49.
    Rath H, Dash P, Som T et al (2009) Structural evolution of TiO2 nanocrystalline thin films by thermal annealing and swift heavy ion irradiation. J Appl Phys 105:074311CrossRefGoogle Scholar
  50. 50.
    Uberuaga BP, Bai XM (2011) Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries. J Phys Condens Matter 23:435004CrossRefGoogle Scholar
  51. 51.
    Qin MJ, Kuo EY, Whittle KR et al (2013) Density and structural effects in the radiation tolerance of TiO2 polymorphs. J Phys Condens Matter 25:355402CrossRefGoogle Scholar
  52. 52.
    Li F, Lu P, Sickafus KE (2002) Effects of Xe-ion irradiation at high temperature on single crystal rutile. J Nucl Mater 306:121–125CrossRefGoogle Scholar
  53. 53.
    Hartmann T, Wang LM, Weber WJ et al (1998) Ion beam radiation damage effects in rutile (TiO2). Nucl Instrum Methods Phys Res Sect B 141:398–403CrossRefGoogle Scholar
  54. 54.
    Liu N, Haublein V, Zhou XM et al (2015) “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H-2-evolution. Nano Lett 15:6815–6820CrossRefGoogle Scholar
  55. 55.
    Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2:2560–2565CrossRefGoogle Scholar
  56. 56.
    Xiong H, Yildirim H, Shevchenko EV et al (2012) Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J Phys Chem C 116:3181–3187CrossRefGoogle Scholar
  57. 57.
    Barnes P, Savva A, Dixon K et al (2018) Electropolishing valve metals with a sulfuric acid-methanol electrolyte at low temperature. Surf Coat Technol 347:150–156CrossRefGoogle Scholar
  58. 58.
    McCreery RL (2000) Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  59. 59.
    Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282CrossRefGoogle Scholar
  60. 60.
    Frank O, Zukalova M, Laskova B, Kürti J, Koltai J, Kavan L (2012) Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys Chem Chem Phys 14:14567–14572CrossRefGoogle Scholar
  61. 61.
    Porto SPS, Fleury PA, Damen TC (1967) Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys Rev 154:522–526CrossRefGoogle Scholar
  62. 62.
    Zhang Y, Harris CX, Wallenmeyer P, Murowchick J, Chen X (2013) Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent raman spectroscopy. J Phys Chem C 117:24015–24022CrossRefGoogle Scholar
  63. 63.
    Ohsaka T, Izumi F, Fujiki Y (1978) Raman-spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRefGoogle Scholar
  64. 64.
    Sahoo S, Arora AK, Sridharan V (2009) Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J Phys Chem C 113:16927–16933CrossRefGoogle Scholar
  65. 65.
    Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 36:98–100Google Scholar
  66. 66.
    Bae I-T, Zhang Y, Weber WJ, Higuchi M, Giannuzzi LA (2007) Electron-beam induced recrystallization in amorphous apatite. Appl Phys Lett 90:021912CrossRefGoogle Scholar
  67. 67.
    Lu F, Shen Y, Sun X, Dong Z, Ewing RC, Lian J (2013) Size dependence of radiation-induced amorphization and recrystallization of synthetic nanostructured CePO4 monazite. Acta Mater 61:2984–2992CrossRefGoogle Scholar
  68. 68.
    Yu N, Sickafus KE, Nastasi M (1996) Electron irradiation induced crystallization of amorphous MgAl2O4. Mater Chem Phys 46:161–165CrossRefGoogle Scholar
  69. 69.
    Yang X, Wang R, Yan H, Zhang Z (1997) Low energy electron-beam-induced recrystallization of continuous GaAs amorphous foils. Mater Sci Eng B 49:5–13CrossRefGoogle Scholar
  70. 70.
    Sina Y, Ishimaru M, McHargue CJ, Alves E, Sickafus KE (2014) Ion beam induced epitaxial crystallization of α-Al2O3 at room temperature. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 321:8–13CrossRefGoogle Scholar
  71. 71.
    Behera AK, Facsko S, Bandyopadyay MK, Das S, Chatterjee S (2014) Amorphization and recrystallization of single-crystalline hydrogen titanate nanowires by N+ ion irradiation. J Appl Phys 115:233505CrossRefGoogle Scholar
  72. 72.
    Zhang JM, Lian J, Namavar F, Ewing RC (2009) Radiation response of nanocrystalline rutile (TiO2). Microsc Microanal 15:1366–1367CrossRefGoogle Scholar
  73. 73.
    Zhang JM, Lian J, Namavar F et al (2011) Nanosized rutile (TiO2) thin film upon ion irradiation and thermal annealing. J Phys Chem C 115:22755–22760CrossRefGoogle Scholar
  74. 74.
    Andrés J, Longo E, Gouveia AF, Gracia L, Oliveira MC (2018) In situ formation of metal nanoparticles through electron beam irradiation: modeling real materials from first-principles calculations. J Mater Sci Eng 7(3):1000461Google Scholar
  75. 75.
    Zhang X, Fu EG, Li N et al (2012) Design of radiation tolerant nanostructured metallic multilayers. J Eng Mater Trans ASME 134:041010CrossRefGoogle Scholar
  76. 76.
    Zhuo MJ, Fu EG, Yan L et al (2011) Interface-enhanced defect absorption between epitaxial anatase TiO2 film and single crystal SrTiO3. Scr Mater 65:807–810CrossRefGoogle Scholar
  77. 77.
    Uberuaga BP, Smith R, Cleave AR et al (2005) Exploring long-time response to radiation damage in MgO. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 228:260–273CrossRefGoogle Scholar
  78. 78.
    Li FX, Lu P, Sickafus KE (2002) Effects of Xe-ion irradiation at high temperature on single crystal rutile. J Nucl Mater 306:121–125CrossRefGoogle Scholar
  79. 79.
    Nordlund K, Sundholm D, Pyykko P, Zambrano DM, Djurabekova F (2017) Nuclear stopping power of antiprotons. Phys Rev A 96:042717CrossRefGoogle Scholar
  80. 80.
    Agnello M, Belli G, Bendiscioli G et al (1995) Antiproton slowing-down in H-2 and He and evidence of nuclear stopping power. Phys Rev Lett 74:371–374CrossRefGoogle Scholar
  81. 81.
    Smith K, Parrish R, Wei W et al (2016) Disordered 3D multi-layer graphene anode material from CO2 for sodium-ion batteries. Chemsuschem 9:1397–1402CrossRefGoogle Scholar
  82. 82.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, HobokenCrossRefGoogle Scholar
  83. 83.
    Levi MD, Salitra G, Markovsky B et al (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279–1289CrossRefGoogle Scholar
  84. 84.
    Ruffo R, Hong SS, Chan CK, Huggins RA, Cui Y (2009) Impedance analysis of silicon nanowire lithium ion battery anodes. J Phys Chem C 113:11390–11398CrossRefGoogle Scholar
  85. 85.
    He BL, Dong B, Li HL (2007) Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem Commun 9:425–430CrossRefGoogle Scholar
  86. 86.
    Ho C, Raistrick ID, Huggins RA (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350CrossRefGoogle Scholar
  87. 87.
    Takami N, Satoh A, Hara M, Ohsaki I (1995) Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J Electrochem Soc 142:371–379CrossRefGoogle Scholar
  88. 88.
    Liao AZ, Wang CW, Chen JB, Zhang XQ, Li Y, Wang J (2015) Remarkably improved field emission of TiO2 nanotube arrays by annealing atmosphere engineering. Mater Res Bull 70:988–994CrossRefGoogle Scholar
  89. 89.
    Tighineanu A, Ruff T, Albu S, Hahn R, Schmuki P (2010) Conductivity of TiO2 nanotubes: influence of annealing time and temperature. Chem Phys Lett 494:260–263CrossRefGoogle Scholar
  90. 90.
    Park M, Zhang XC, Chung MD, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929CrossRefGoogle Scholar
  91. 91.
    Was GS (2007) Fundamentals of radiation materials science: metals and alloys. Springer, BerlinGoogle Scholar
  92. 92.
    Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer DT, Allen TR (2013) Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434:311–321CrossRefGoogle Scholar
  93. 93.
    Snead LL, Zinkle SJ, White DP (2005) Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation. J Nucl Mater 340:187–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Micron School of Materials Science and EngineeringBoise State UniversityBoiseUSA
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Ion Beam Materials Laboratory, Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Department of PhysicsBoise State UniversityBoiseUSA
  5. 5.Center for Nanoscale MaterialsArgonne National LaboratoryLemontUSA
  6. 6.College of Mines and Earth SciencesUniversity of UtahSalt Lake CityUSA
  7. 7.School of Nuclear EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations