Advertisement

Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent

  • Yingchao Du
  • Bo Yu
  • Lianqi Wei
  • Yongliang Wang
  • Xiaomeng ZhangEmail author
  • Shufeng YeEmail author
Materials for life sciences

Abstract

As a layered material, Ti3C2Tx powders possess high ion-exchange capability and relative stable physical properties, but there are some drawbacks associated with Ti3C2Tx powders such as weak adsorption ability in dealing with the organic pollutions and heavy metal ions. A simple method is employed to regulate Ti3C2Tx powders with the silane coupling agent KH570, which is proved to be an efficient way for adsorption to Pb(II). In this work, Ti3C2Tx powders with the modification of KH570 (Ti3C2Tx-KH570) possesses high specific surface area, thermostability and high ion-exchange capability. From the experiment of adsorption, when the concentration of Ti3C2Tx-KH570 powders in the solution is about 3.2 g L−1, the removal rate is about 99.99%. In addition, the adsorption capacity of Ti3C2Tx-KH570 powders to Pb2+ is approximately 147.29 mg g−1 at the temperature of 30 °C, while the adsorption capability of Ti3C2Tx powders to Pb2+ is 48.28 mg g−1. A higher concentration of silane clogs, the available space making it inaccessible for lead adsorption, which indicates that the internal MXene hydroxyl groups are in the majority responsible for Pb2+ adsorption. The Pb2+ adsorption depends on the availability of MXene hydroxyl groups and KH570 carbonyl group of methacryloxypropyl chain. The result indicates that KH570 is a new direction for the surface modification of Ti3C2Tx powders.

Notes

Acknowledgement

It is grateful for Chinese Academy of Sciences project [Grant Number KFJ-STS-QYZD-044] and the “Strategic Priority Research Program” of the Chinese Academy of Sciences [Grant Number XDA09040102] to support this work.

Compliance with ethical standard

Conflicts of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Luo SL, Xu XL, Zhou GY, Liu CB, Tang YH, Liu YT (2014) Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J Hazard Mater 274:145–155CrossRefGoogle Scholar
  2. 2.
    Zheng J, Chen KH, Yan X, Chen SJ, Hu GC, Peng XW, Yuan JG, Mai BX, Yang ZY (2013) Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotoxicol Environ Saf 96:205–212CrossRefGoogle Scholar
  3. 3.
    Li ZL, Xiao D, Ge YY, Koehler S (2015) Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution. ACS Appl Mater Interfaces 7:15000–15009CrossRefGoogle Scholar
  4. 4.
    Hertz-Picciotto I (2000) The evidence that lead increases the risk for spontaneous abortion. Am J Ind Med 38:300–309CrossRefGoogle Scholar
  5. 5.
    Restrepo HG, Sicard D, Torres MM (2000) DNA damage and repair in cells of lead exposure people. Am J Ind Med 38:330–334CrossRefGoogle Scholar
  6. 6.
    Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50:13589–13613CrossRefGoogle Scholar
  7. 7.
    Gang W, Chang Q, Zhang MY (2013) Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation. J Hazard Mater 248–249:115–121Google Scholar
  8. 8.
    Mathew A, Parambadath S, Kim SY, Ha HM, Ha CS (2016) Diffusion mediated selective adsorption of Zn2+ from artificial seawater by MCM-41. Micropor Mesopor Mat 229:124–133CrossRefGoogle Scholar
  9. 9.
    Tan Y, Chen M, Hao Y (2012) High efficient removal of Pb(II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem Eng J 191:104–111CrossRefGoogle Scholar
  10. 10.
    Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462CrossRefGoogle Scholar
  11. 11.
    Liu C, Jia FF, Wang QM, Yang BQ, Song SX (2017) Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. App Mater Today 9:220–228CrossRefGoogle Scholar
  12. 12.
    Zhang JF, Xie XD, Liang C, Zhu WH, Meng XG (2019) Characteristics and mechanism of Pb(II) adsorption/desorption on GO/r-GO under sulfide-reducing conditions. J Ind Eng Chem 73:233–240CrossRefGoogle Scholar
  13. 13.
    Xiong C, Wang SX, Sun WT, Li Y (2019) Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with diethanolamine: equilibrium, kinetic and thermodynamic. Microchem J 146:270–278CrossRefGoogle Scholar
  14. 14.
    Hope MA, Forse AC, Griffith KJ, Lukatskaya MR, Ghidiu M, Gogotsi Y, Grey CP (2016) NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys 18:5099–5102CrossRefGoogle Scholar
  15. 15.
    Yang JH, Zhang SZ, Ji JL, Wei SH (2015) Adsorption activities of O, OH, F and Au on Two-dimensional Ti2C and Ti3C2 Surface. Acta Phys Chim Sin 31:369–376Google Scholar
  16. 16.
    Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 35:1137–1140CrossRefGoogle Scholar
  17. 17.
    Peng QM, Guo JX, Zhang QR, Xiang JY, Liu BZ, Zhou AG, Liu RQ, Tian YJ (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136:4113–4116CrossRefGoogle Scholar
  18. 18.
    Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud KA, Lee DS (2017) Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain Chem Eng 5:114841–114988CrossRefGoogle Scholar
  19. 19.
    Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud KA, Lee DS (2018) Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J Hazard Mater 344:811–818CrossRefGoogle Scholar
  20. 20.
    Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y (2015) Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett 6:4026–4031CrossRefGoogle Scholar
  21. 21.
    Zhao JQ, Yang YW, Yang CH, Tian YP, Han Y, Liu J, Yin XT, Que WX (2018) A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J Mater Chem A 6:16196–16204CrossRefGoogle Scholar
  22. 22.
    Shahzad A, Rasool K, Nawaz M, Miran W, Jang J, Moztahida M, Mahmoud KA, Lee DS (2018) Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem Eng J 349:748–755CrossRefGoogle Scholar
  23. 23.
    Skubal LR, Meshkov NK, Rajh T (2002) Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol A 148:393–397CrossRefGoogle Scholar
  24. 24.
    Yan M, Zeng G, Li X, Zhao C, Yang G, Gong J, Tang L, Huang D (2017) Titanium dioxide nanotube arrays with silane coupling agent modification for heavy metal reduction and persistent organic pollutant degradation. N J Chem 41(11):4377–4389CrossRefGoogle Scholar
  25. 25.
    Zhao J, Milanova M, Warmoeskerkena MMCG, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf A 413:273–279CrossRefGoogle Scholar
  26. 26.
    Tai Y, Qian J (2008) Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chem Eng J 141:354–361CrossRefGoogle Scholar
  27. 27.
    Arkles B (1977) Tailoring surfaces with silanes. ChemTech 7:766–778Google Scholar
  28. 28.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4207–4207CrossRefGoogle Scholar
  29. 29.
    Nagappan S, Ha HM, Park SS, Jo NJ, Ha CS (2017) One-pot synthesis of multi-functional magnetite–polysilsesquioxane hybrid nanoparticles for the selective Fe3+ and some heavy metal ions adsorption. RSC Adv 7:19106–19116CrossRefGoogle Scholar
  30. 30.
    Huang YX, Keller AA (2015) EDTA functionalized magnetic nanoparticles sorbent for cadmium and lead contaminated water treatment. Water Res 80:159–168CrossRefGoogle Scholar
  31. 31.
    Zheng M, Guo RS, Liu ZC, Wang BY, Meng LC, Li FY, Li TT, Luo YN (2018) MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J Alloy Compo 735:1262–1270CrossRefGoogle Scholar
  32. 32.
    Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716–1723CrossRefGoogle Scholar
  33. 33.
    Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W (2016) Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499CrossRefGoogle Scholar
  34. 34.
    Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X (2017) Pillared structure design of MXene with ultra-large interlayer spacing for high performance lithium-ion capacitors. ACS Nano 11:2459–2469CrossRefGoogle Scholar
  35. 35.
    Epling WS, Hoflund GB, Weaver JF, Tsubota S, Haruta M (1996) Surface characterization study of Au/α-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts. J Phys Chem B 100:9929–9934CrossRefGoogle Scholar
  36. 36.
    Wang GQ, Xing W, Zhuo SP (2013) Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells. Electrochim Acta 92:269–275CrossRefGoogle Scholar
  37. 37.
    Persson I, Näslund L, Halim J, Barsoum MW, Darakchieva V, Palisaitis J, Rosen J (2018) P.O.Å. Persson, On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater 5:15002–15011CrossRefGoogle Scholar
  38. 38.
    Guo DM, An QD, Xiao ZY, Zhai SR, Yang DJ (2018) Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohyd Polym 202:306–314CrossRefGoogle Scholar
  39. 39.
    Rangel-Mendeza JR, Monroy-Zepeda R, Leyva-Ramos E, Diaz-Flores PE, Shirai K (2009) Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J Hazard Mater 162:503–511CrossRefGoogle Scholar
  40. 40.
    Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82CrossRefGoogle Scholar
  41. 41.
    Anush SM, Vishalakshi B, Chandan HR, Geetha BR (2018) Heterocyclic modification of chitosan for the adsorption of Cu (II) and Cr(VI) ions. Sep Sci Technol 53:1979–1990CrossRefGoogle Scholar
  42. 42.
    Dong ZH, Wang D, Liu X, Pei XF, Chen LW, Jin J (2014) Bio-inspired surface-functionalization of grapheme oxide for the adsorption of organic dyes and heavy metal ions with a super high capacity. J. Mater. Chem. A 2:5034–5040CrossRefGoogle Scholar
  43. 43.
    Niu YL, Li K, Ying D, Wang Y, Jia J (2017) Novel recyclable adsorbent for the removal of copper (II) and lead (II) from aqueous solution. Bioresource Technol. 229:63–68CrossRefGoogle Scholar
  44. 44.
    Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605–609CrossRefGoogle Scholar
  45. 45.
    Zhou Q, Luo WJ, Zhang X (2017) Ingenious route for ultraviolet-induced graft polymerization achieved on inorganic particle: fabricating magnetic poly(acrylic acid) densely grafted nanocomposites for Cu2+ removal. Appl Surf Sci 413:181–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations