Advertisement

Modulation of biological properties by grain refinement and surface modification on titanium surfaces for implant-related infections

  • A. Sandeep Kranthi Kiran
  • Merum Sireesha
  • Raghavendra Ramalingam
  • Atish Kizhakeyil
  • Navin Kumar Verma
  • Rajamani Lakshminarayanan
  • T. S. Sampath KumarEmail author
  • Mukesh Doble
  • Seeram RamakrishnaEmail author
Materials for life sciences

Abstract

The nanostructured titanium (Ti) obtained by the equal-channel angular pressing (ECAP) has shown great promise as a biomedical implant material over the past few decades. The present work aims to investigate the effect of topographical changes caused by ECAP and piranha treatment (Tr) on the surface performance and biological properties of Ti for bone tissue engineering applications. The effects of dual treatments, i.e., ECAP and Tr, on Ti were systematically investigated by multiple characterization techniques, surface wettability, apatite-forming ability, cellular behavior, and antibacterial studies. We demonstrate that both ECAP and ECApTr samples possess desirable mechanical and physical properties and are biocompatible to cultured human fetal osteoblast (hFOB) cells. The potential of adhesion and proliferation of hFOB cells on ECAP and ECApTr samples was found to be superior to that of control unprocessed sample (annealed). Ti samples prepared by both methods showed excellent antimicrobial properties against clinical strains of the most common pathogenic bacteria causing orthopedic implant infections, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). This study supports the established claim about mechanical properties improvement by ultrafine refinement and further enhances the antibacterial properties when chemically etched with a piranha solution.

Notes

Acknowledgements

The authors thank the Lloyd’s Register Foundation, UK (Project Number R265000553597 Nanotechnology in Sub-Sea Power Transmission) for research support. NKV acknowledges funding support from Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Start-Up Grant (L0412290), and Strategic Academic Initiative Grant (SAI-L0494003).

References

  1. 1.
    Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med 7(1):22–39.  https://doi.org/10.1016/j.nano.2010.10.005 Google Scholar
  2. 2.
    Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304.  https://doi.org/10.1016/j.tibtech.2013.01.017 Google Scholar
  3. 3.
    Leventhal GS (1951) Titanium, a metal for surgery. J Bone Joint Surg 33(2):473–474Google Scholar
  4. 4.
    Brånemark PI, Breine U, Johansson B, Roylance PJ, Röckert H, Yoffey JM (1964) Regeneration of bone marrow. Cells Tissues Organs 59(1–2):1–46.  https://doi.org/10.1159/000142601 Google Scholar
  5. 5.
    Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18):1621–1639.  https://doi.org/10.1016/S0142-9612(97)00146-4 Google Scholar
  6. 6.
    Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4(5):445–454.  https://doi.org/10.1016/j.stam.2003.09.002 Google Scholar
  7. 7.
    Li Y, Yang C, Zhao H, Qu S, Li X, Li Y (2014) New developments of Ti-based alloys for biomedical applications. Materials 7(3):1709–1800.  https://doi.org/10.3390/ma7031709 Google Scholar
  8. 8.
    Morais LS, Serra GG, Albuquerque Palermo EF, Andrade LR, Müller CA, Meyers MA, Elias CN (2009) Systemic levels of metallic ions released from orthodontic mini-implants. Am J Orthod Dentofac Orthop 135(4):522–529.  https://doi.org/10.1016/j.ajodo.2007.04.045 Google Scholar
  9. 9.
    Okazaki Y, Gotoh E, Manabe T, Kobayashi K (2004) Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 25(28):5913–5920.  https://doi.org/10.1016/j.biomaterials.2004.01.064 Google Scholar
  10. 10.
    Shettlemore MG, Bundy KJ (1999) Toxicity measurement of orthopedic implant alloy degradation products using a bioluminescent bacterial assay. J Biomed Mater Res 45(4):395–403.  https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4%3c395:AID-JBM15%3e3.0.CO;2-H Google Scholar
  11. 11.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39.  https://doi.org/10.1007/s11837-006-0213-7 Google Scholar
  12. 12.
    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61(3):782–817.  https://doi.org/10.1016/j.actamat.2012.10.038 Google Scholar
  13. 13.
    Ratna Sunil B, Thirugnanam A, Chakkingal U, Sampath Kumar TS (2016) Nano and ultra fine grained metallic biomaterials by severe plastic deformation techniques. Mater Technol 31(13):743–755.  https://doi.org/10.1080/10667857.2016.1249133 Google Scholar
  14. 14.
    Misra RDK, Thein-Han WW, Pesacreta TC, Somani MC, Karjalainen LP (2010) Biological significance of nanograined/ultrafine-grained structures: interaction with fibroblasts. Acta Biomater 6(8):3339–3348.  https://doi.org/10.1016/j.actbio.2010.01.034 Google Scholar
  15. 15.
    Park J-W, Kim Y-J, Park CH, Lee D-H, Ko YG, Jang J-H, Lee CS (2009) Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater 5(8):3272–3280.  https://doi.org/10.1016/j.actbio.2009.04.038 Google Scholar
  16. 16.
    Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38(6):4421–4435.  https://doi.org/10.1016/j.ceramint.2012.03.002 Google Scholar
  17. 17.
    Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3):49–121.  https://doi.org/10.1016/j.mser.2004.11.001 Google Scholar
  18. 18.
    Lord MS, Modin C, Foss M, Duch M, Simmons A, Pedersen FS, Milthorpe BK, Besenbacher F (2006) Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27(26):4529–4537.  https://doi.org/10.1016/j.biomaterials.2006.04.006 Google Scholar
  19. 19.
    Jojibabu P, Ratna Sunil B, Sampath Kumar TS, Chakkingal U, Nandakumar V, Doble M (2013) Wettability and in vitro bioactivity studies on titanium rods processed by equal channel angular pressing. Trans Indian Inst Met 66(4):299–304.  https://doi.org/10.1007/s12666-013-0281-7 Google Scholar
  20. 20.
    Variola F, Brunski J, Orsini G, de Oliveira PT, Wazen R, Nanci A (2011) Nanoscale surface modifications of medically-relevant metals: state-of-the art and perspectives. Nanoscale 3(2):335–353.  https://doi.org/10.1039/c0nr00485e Google Scholar
  21. 21.
    de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A (2007) Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res Part A 80A(3):554–564.  https://doi.org/10.1002/jbm.a.30955 Google Scholar
  22. 22.
    Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4 V, and CoCrMo. Biomaterials 25(19):4731–4739.  https://doi.org/10.1016/j.biomaterials.2003.12.002 Google Scholar
  23. 23.
    Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197.  https://doi.org/10.1016/j.biomaterials.2007.03.020 Google Scholar
  24. 24.
    Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573–1583.  https://doi.org/10.1016/S0142-9612(97)00144-0 Google Scholar
  25. 25.
    Edwards KJ, Rutenberg AD (2001) Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem Geol 180(1):19–32.  https://doi.org/10.1016/S0009-2541(01)00303-5 Google Scholar
  26. 26.
    Tambasco de Oliveira P, Nanci A (2004) Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 25(3):403–413.  https://doi.org/10.1016/S0142-9612(03)00539-8 Google Scholar
  27. 27.
    Seddiki O, Harnagea C, Levesque L, Mantovani D, Rosei F (2014) Evidence of antibacterial activity on titanium surfaces through nanotextures. Appl Surf Sci 308:275–284.  https://doi.org/10.1016/j.apsusc.2014.04.155 Google Scholar
  28. 28.
    Sandeep Kranthi Kiran A, Sampath Kumar TS, Perumal G, Sanghavi R, Doble M, Ramakrishna S (2018) Dual nanofibrous bioactive coating and antimicrobial surface treatment for infection resistant titanium implants. Prog Org Coat 121:112–119.  https://doi.org/10.1016/j.porgcoat.2018.04.028 Google Scholar
  29. 29.
    Mishra A, Kad BK, Gregori F, Meyers MA (2007) Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater 55(1):13–28.  https://doi.org/10.1016/j.actamat.2006.07.008 Google Scholar
  30. 30.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915.  https://doi.org/10.1016/j.biomaterials.2006.01.017 Google Scholar
  31. 31.
    Harris SA, Enger RJ, Riggs LB, Spelsberg TC (1995) Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10(2):178–186.  https://doi.org/10.1002/jbmr.5650100203 Google Scholar
  32. 32.
    Kim TN, Balakrishnan A, Lee BC, Kim WS, Dvorankova B, Smetana K, Park JK, Panigrahi BB (2007) In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process. J Mater Sci Mater Med 19(2):553–557.  https://doi.org/10.1007/s10856-007-3204-5 Google Scholar
  33. 33.
    Bauer S, Schmuki P, von der Mark K, Park J (2013) Engineering biocompatible implant surfaces: Part I: materials and surfaces. Prog Mater Sci 58(3):261–326.  https://doi.org/10.1016/j.pmatsci.2012.09.001 Google Scholar
  34. 34.
    Simi VS, Rajendran N (2017) Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotube arrays for biomedical applications. Mater Charact 129:67–79.  https://doi.org/10.1016/j.matchar.2017.04.019 Google Scholar
  35. 35.
    Attar H, Calin M, Zhang LC, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 593:170–177.  https://doi.org/10.1016/j.msea.2013.11.038 Google Scholar
  36. 36.
    Ketabchi A, Komm K, Miles-Rossouw M, Cassani DAD, Variola F (2014) Nanoporous titanium surfaces for sustained elution of proteins and antibiotics. PLoS ONE 9(3):e92080.  https://doi.org/10.1371/journal.pone.0092080 Google Scholar
  37. 37.
    Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D (1998) Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 40(1):1–11.  https://doi.org/10.1002/(sici)1097-4636(199804)40:1%3c1:aid-jbm1%3e3.0.co;2-q Google Scholar
  38. 38.
    Cho S-A, Park K-T (2003) The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials 24(20):3611–3617.  https://doi.org/10.1016/S0142-9612(03)00218-7 Google Scholar
  39. 39.
    Kaczmarek D, Domaradzki J, Wojcieszak D, Prociow E, Mazur M, Placido F, Lapp S (2012) Hardness of nanocrystalline TiO2 thin films. J Nano Res 18–19:195–200.  https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.195 Google Scholar
  40. 40.
    Hajizadeh K, Eghbali B, Topolski K, Kurzydlowski KJ (2014) Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region. Mater Chem Phys 143(3):1032–1038.  https://doi.org/10.1016/j.matchemphys.2013.11.001 Google Scholar
  41. 41.
    Zhang Y, Figueiredo RB, Alhajeri SN, Wang JT, Gao N, Langdon TG (2011) Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature. Mater Sci Eng A 528(25):7708–7714.  https://doi.org/10.1016/j.msea.2011.06.054 Google Scholar
  42. 42.
    Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3(3):671–690.  https://doi.org/10.1039/C2RA21260A Google Scholar
  43. 43.
    Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10(7):2894–2906.  https://doi.org/10.1016/j.actbio.2014.02.040 Google Scholar
  44. 44.
    Shibata Y, Tanimoto Y (2015) A review of improved fixation methods for dental implants. Part I: surface optimization for rapid osseointegration. J Prosthodont Res 59(1):20–33.  https://doi.org/10.1016/j.jpor.2014.11.007 Google Scholar
  45. 45.
    Hench L, Wilson J (1984) Surface-active biomaterials. Science 226(4675):630–636.  https://doi.org/10.1126/science.6093253 Google Scholar
  46. 46.
    Tong WP, Tao NR, Wang ZB, Lu J, Lu K (2003) Nitriding iron at lower temperatures. Science 299(5607):686–688.  https://doi.org/10.1126/science.1080216 Google Scholar
  47. 47.
    Yuan Y, Hays MP, Hardwidge PR, Kim J (2017) Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv 7(23):14254–14261.  https://doi.org/10.1039/C7RA01571B Google Scholar
  48. 48.
    Skindersoe ME, Krogfelt KA, Blom A, Jiang G, Prestwich GD, Mansell JP (2015) Dual action of lysophosphatidate-functionalised titanium: interactions with human (MG63) osteoblasts and methicillin resistant Staphylococcus aureus. PLoS ONE 10(11):e0143509.  https://doi.org/10.1371/journal.pone.0143509 Google Scholar
  49. 49.
    Lüdecke C, Roth M, Yu W, Horn U, Bossert J, Jandt KD (2016) Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf B 145:617–625.  https://doi.org/10.1016/j.colsurfb.2016.05.049 Google Scholar
  50. 50.
    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6(10):3824–3846.  https://doi.org/10.1016/j.actbio.2010.04.001 Google Scholar
  51. 51.
    Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31(4):706–713.  https://doi.org/10.1016/j.biomaterials.2009.09.081 Google Scholar
  52. 52.
    Truong VK, Rundell S, Lapovok R, Estrin Y, Wang JY, Berndt CC, Barnes DG, Fluke CJ, Crawford RJ, Ivanova EP (2009) Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol 83(5):925–937.  https://doi.org/10.1007/s00253-009-1944-5 Google Scholar
  53. 53.
    Mitik-Dineva N, Wang J, Truong VK, Stoddart P, Malherbe F, Crawford RJ, Ivanova EP (2009) Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol 58(3):268–273.  https://doi.org/10.1007/s00284-008-9320-8 Google Scholar
  54. 54.
    Mitik-Dineva N, Wang J, Mocanasu RC, Stoddart PR, Crawford RJ, Ivanova EP (2008) Impact of nano-topography on bacterial attachment. Biotechnol J 3(4):536–544.  https://doi.org/10.1002/biot.200700244 Google Scholar
  55. 55.
    Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res Part A 78A(3):595–604.  https://doi.org/10.1002/jbm.a.30789 Google Scholar
  56. 56.
    Ploux L, Anselme K, Dirani A, Ponche A, Soppera O, Roucoules V (2009) Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation. Langmuir 25(14):8161–8169.  https://doi.org/10.1021/la900457f Google Scholar
  57. 57.
    Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P (2014) Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30(31):9466–9476.  https://doi.org/10.1021/la501711t Google Scholar
  58. 58.
    Baek SM, Shin MH, Moon J, Jung HS, Lee SA, Hwang W, Yeom JT, Hahn SK, Kim HS (2017) Superior pre-osteoblast cell response of etched ultrafine-grained titanium with a controlled crystallographic orientation. Sci Rep 7:44213.  https://doi.org/10.1038/srep44213 Google Scholar
  59. 59.
    Vetrone F, Variola F, Tambasco de Oliveira P, Zalzal SF, Yi J-H, Sam J, Bombonato-Prado KF, Sarkissian A, Perepichka DF, Wuest JD, Rosei F, Nanci A (2009) Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. Nano Lett 9(2):659–665.  https://doi.org/10.1021/nl803051f Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Materials Laboratory, Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
  3. 3.NUS Centre for Nanofibers and Nanotechnology, Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
  5. 5.Skin Research Institute of SingaporeSingaporeSingapore
  6. 6.Anti-Infectives Research GroupSingapore Eye Research Institute, The AcademiaSingaporeSingapore

Personalised recommendations