Advertisement

Journal of Materials Science

, Volume 54, Issue 19, pp 12371–12380 | Cite as

Effects of alkaline earth oxides on the densification and microwave properties of low-temperature fired BaO–Al2O3–SiO2 glass–ceramic/Al2O3 composites

  • Haijun MaoEmail author
  • Xingyu Chen
  • Fenglin Wang
  • Weijun ZhangEmail author
Ceramics
  • 7 Downloads

Abstract

The effects of alkaline-earth oxides (SrO, CaO, MgO) on the densification and microwave properties of low-temperature fired BaO–Al2O3–SiO2 (BAS) glass–ceramic/Al2O3 composites have been investigated. By adding alkaline-earth oxides, the softening and crystallization behaviors of BAS-based glass–ceramics, which determine the densification of composites, are sequentially weakened in the order of BAS, SrO–BaO–Al2O3–SiO2 (SBAS), CaO–BaO–Al2O3–SiO2 (CBAS) and MgO–BaO–Al2O3–SiO2 (MBAS). It is also found in the above BAS-based glass–ceramics that the addition of alkaline-earth oxides plays a more profound role on crystallization behavior than on softening behavior, leading to the expansion of the interval between crystallization and softening temperatures (i.e., densification temperature range) to different degrees depending on the type of oxides added. As a result, the microstructures of oxides-modified glass–ceramic/Al2O3 composites (SBAS/Al2O3, CBAS/Al2O3, MBAS/Al2O3) are much denser than those of BAS/Al2O3. The properties of such composites are determined by the interplay among density of microstructure, amount and relative ratio of crystalline and residual glass phases related to the crystallization behavior and interfacial reaction. Detailed analyses suggest that CBAS/Al2O3 achieves optimal properties among all the four composites. Specifically, for CBAS/Al2O3 the dielectric constant, dielectric loss, bending strength and CTE value are 5.81 ± 0.12 (at ~ 10 GHz), (2.04 ± 0.12) × 10−3 (at ~ 10 GHz), 155 ± 7 MPa and 6.58 ± 0.11 ppm/°C, respectively. Our findings may provide a new avenue to design LTCC substrate materials as feasible candidates for microwave devices.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 51702363) and the Research Project of National University of Defence Technology (Grant No. ZK18-03-15).

References

  1. 1.
    Di-Si W, Chun LY, Quan X (2018) Filtering power divider with harmonic suppression based on LTCC broadside coupling. Electron Lett 54:697–699CrossRefGoogle Scholar
  2. 2.
    Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90CrossRefGoogle Scholar
  3. 3.
    Mastelaro VR, Bayer PS, Zanotto ED (2019) Crystallization mechanism and kinetics of a Fe-diopside (25CaO 25MgO 50SiO2) glass-ceramic. J Mater Sci 54:9313–9320.  https://doi.org/10.1007/s10853-019-03572-y CrossRefGoogle Scholar
  4. 4.
    Li B, Bian HB, Jing K (2019) Effect of MnO addition on microstructures and properties of BaO–Al2O3–B2O3–SiO2 glass-ceramics for LTCC application. Mater Lett 234:302–305CrossRefGoogle Scholar
  5. 5.
    Döhler F, Zscheckel T, Kasch S, Schmidt T, Patzig C, Höche T, Rüssel C (2018) Crystallization and microstructure of a glass seal for rapid laser sealing in the system CaO/Al2O3/SiO2. J Mater Sci 53:16207–16219.  https://doi.org/10.1007/s10853-018-2786-2 CrossRefGoogle Scholar
  6. 6.
    Zhu HK, Liu M, Zhou HQ, Li LQ, Lv A (2007) Study on properties of CaO–SiO2–B2O3 system glass–ceramic. Mater Res Bull 42:1137–1144CrossRefGoogle Scholar
  7. 7.
    Arcaro S, Wermuth TB, Zampiva RYS, Venturini J, Caten CST, Bergmann CP, Alves AK, Novaes de Oliveira AP, Moreno R (2019) Li2O-ZrO2-SiO2/Al2O3 nanostructured composites for microelectronics applications. J Eur Ceram Soc 39:491–498CrossRefGoogle Scholar
  8. 8.
    Zhu X, Kong F, Ma X (2018) Effects of Al2O3 on sinterability and properties of MgTiO3/CaO-B2O3-SiO2 dielectric ceramic composites. J Mater Sci Mater Electron 29:20710–20717CrossRefGoogle Scholar
  9. 9.
    Hartmann HS (1991) Crystallizable, low dielectric constant, low dielectric loss composition, US Patent 5024975Google Scholar
  10. 10.
    Yoon SO, Kim KS, Kim S, Shim SH, Park JG (2007) Densification and dielectric properties of glass/ceramic composites sintered with various borosilicate glass. Mater Sci Forum 544–545:961–964CrossRefGoogle Scholar
  11. 11.
    Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mat Sci Eng R 67:65–85CrossRefGoogle Scholar
  12. 12.
    Chen S, Zhang SR, Zhou XH, Li B (2011) Thermal and dielectric properties of the LTCC composites based on the eutectic system BaO–Al2O3–SiO2–B2O3. J Mater Sci Mater Electron 22:238–243CrossRefGoogle Scholar
  13. 13.
    Li B, Tang B, Xu M (2015) Influences of CaO on crystallization, microstructures, and properties of BaO–Al2O3–B2O3–SiO2 Glass-Ceramics. J Mater Sci Mater Electron 27:1–6Google Scholar
  14. 14.
    Li B, Xu M, Tang B (2016) Effect of ZnO on crystallization, microstructures, and properties of BaO–Al2O3–B2O3–SiO2 glass–ceramics. J Mater Sci Mater Electron 27:70–76CrossRefGoogle Scholar
  15. 15.
    Li B, Long QY, Duan DN (2016) Effects of ZrO2 on properties of BaO–Al2O3–B2O3–SiO2 composites for LTCC applications. J Mater Sci Mater Electron 27:2824–2829CrossRefGoogle Scholar
  16. 16.
    Li B, Li W, Zheng JG (2017) Effect of SiO2 content on the sintering kinetics, microstructures and properties of BaO–Al2O3–B2O3–SiO2 glass-ceramics for LTCC application. J Alloy Compd 725:1091–1097CrossRefGoogle Scholar
  17. 17.
    Li B, Long QY, Duan DN (2016) Effect of sintering temperatures on properties of BaO–B2O3–SiO2–Al2O3 glass/silica composites for CBGA package. J Mater Sci Mater Electron 27:2206–2211CrossRefGoogle Scholar
  18. 18.
    Yuan LN, Liu B, Shen NN, Zhai T, Yang D (2014) Synthesis and properties of borosilicate/AlN composite for low temperature co-fired ceramics application. J Alloy Compd 593:34–40CrossRefGoogle Scholar
  19. 19.
    Lee TH, Cho SH, Lee TG, Kim HT, You IK, Nahm S (2018) Carbon nanotube/graphene oxide-added CaO–B2O3–SiO2 glass/Al2O3 composite as substrate for chip-type supercapacitor. J Am Ceram Soc 101:3156–3167CrossRefGoogle Scholar
  20. 20.
    Wang FL, Chen XY, Zhang WJ, Mao HJ (2018) Synthesis and characterization of borosilicate glass/β-spodumene/Al2O3 composites with low CTE value for LTCC applications. J Mater Sci Mater Electron 29:9038–9044CrossRefGoogle Scholar
  21. 21.
    Li ZX, Mao HJ, Zhang YW, Zhang WJ (2018) Influences of glass content on the microstructure and properties of BaO-CaO-Al2O3-SiO2 glass/alumina composite for LTCC applications. IOP Conf Ser Mater Sci Eng 292:012082CrossRefGoogle Scholar
  22. 22.
    Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D (2000) Crystallisation kinetics in AO–Al2O3–SiO2–B2O3 glasses (A = Ba, Ca, Mg). J Mater Sci 35:3089–3096.  https://doi.org/10.1023/A:1004851418274 CrossRefGoogle Scholar
  23. 23.
    Goel A, Tulyaganov DU, Kharton VV, Yaremchenko AA, Eriksson S, Ferreira JMF (2009) Optimization of La2O3-containing diopside based glass-ceramic sealants for fuel cell applications. J Power Sources 189:1032–1043CrossRefGoogle Scholar
  24. 24.
    Mukherjee DP, Das SK (2013) Effects of nano silica on synthesis and properties of glass ceramics in SiO2–Al2O3–CaO–CaF2 glass system: a comparison. J Non-Cryst Solids 368:98–104CrossRefGoogle Scholar
  25. 25.
    Zitani MK, Rezvani M, Tabrizi RA (2014) Crystallization, sinterability and microwave dielectric properties of CaO–SiO2–Na2O–MgO glass ceramics containing Fe2O3 and ZnO. Electron Mater Lett 10:131–137CrossRefGoogle Scholar
  26. 26.
    He F, Zhou Q, Xie J, Zhang Q (2015) Characterization of low sintering temperature and high strength SiO2–B2O3–CaO vitrified bonds for diamond abrasive tools. Ceram Int 41:3449–3455CrossRefGoogle Scholar
  27. 27.
    Smiljanić SV, Grujić SR, Tošić MB, Živanović VD, Stojanović JN, Matijašević SD, Nikolić JD (2014) Crystallization and sinterability of glass-ceramics in the system La2O3–SrO–B2O3. Ceram Int 40:297–305CrossRefGoogle Scholar
  28. 28.
    Maviael JDS, José FB, Antonio HDA, Sonia M-C (2016) Glass ceramic sealants belonging to BAS (BaO–Al2O3–SiO2) ternary system modified with B2O3 addition: a different approach to access the SOFC seal issue. J Eur Ceram Soc 36:631–644CrossRefGoogle Scholar
  29. 29.
    Muralidhar AS, Shaikh GJ, Roberts DL (1992) Low dielectric low temperature fried glass ceramics. US Patent 5164342Google Scholar
  30. 30.
    Marocco A, Liguori B, Dell’Agli G, Pansini M (2011) Sintering behaviour of celsian based ceramics obtained from the thermal conversion of (Ba, Sr)-exchanged zeolite. J Eur Ceram Soc 31:1965–1973CrossRefGoogle Scholar
  31. 31.
    Fu YP, Chang C-C, Lin C-H, Chin T-S (2004) Solid-state synthesis of ceramics in the BaO–SrO–Al2O3–SiO2 system. Ceram Int 30:41–45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations