Mechanical properties of nanoporous gold subjected to tensile stresses in real-time, sub-microscopic scale

  • Joshua StucknerEmail author
  • Mitsuhiro Murayama
Metals & corrosion


Ductile metals infiltrated with interconnected nanopores through selective dealloying gain useful properties but become macroscopically brittle due to flow localization. The mechanical behavior of nanoporous metals is dependent on a complex relationship between the deformation of the nanoporous foam structure and the deformation of the individual ligaments. Recent simulations and in situ experiments have revealed many insights into the deformation behavior of nanoporous metals, but it remains unclear how to engineer the structure to reduce flow localization. We perform transmission electron microscopy in situ tensile experiments on freestanding nanoporous gold films and observe the morphology evolution of both the interconnected structure and individual ligaments during deformation. Most ligaments fractured through plastic instability after large plastic elongation. We also observed several unexpected results such as instances of strain hardening and nanoscale brittle fracture in individual ligaments. Our observations suggest that highly curved ligaments and a wider distribution of ligament diameters could each contribute to ductility and fracture toughness.



This work was sponsored by the NSF DMREF program under Grant Nos. #1623051 and #1533969. We acknowledge DOE BES Geosciences (DE-FG02-06ER15786) for developing the in situ TEM capability. Facilities were made available through Virginia Tech’s Institute for Critical Technology and Applied Science Nanoscale Characterization and Fabrication Laboratory (ICTAS-NCFL). We acknowledge Dr. Diana Farkas, Dr. William Reynolds, and Dr. Sean Corcoran for their expertise and insightful conversations. We also acknowledge the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by NSF (ECCS 1542100) for providing technical consultation.

Compliance with ethical standards

Conflict of interest

The authors are unaware of any conflicts of interest regarding the data and findings presented in this manuscript.

Supplementary material

10853_2019_3762_MOESM1_ESM.mpg (64.4 mb)
Supplementary material 1 (MPG 65936 kb)
10853_2019_3762_MOESM2_ESM.mpg (20.2 mb)
Supplementary material 2 (MPG 20638 kb)
10853_2019_3762_MOESM3_ESM.mpg (27.3 mb)
Supplementary material 3 (MPG 27958 kb)
10853_2019_3762_MOESM4_ESM.mpg (15.6 mb)
Supplementary material 4 (MPG 15930 kb)


  1. 1.
    Wittstock A, Wichmann A, Biener J, Bäumer M (2011) Nanoporous gold: a new gold catalyst with tunable properties. Faraday Discuss 152:87–98. CrossRefGoogle Scholar
  2. 2.
    Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34:569–576. CrossRefGoogle Scholar
  3. 3.
    Lang X, Arai S, Guan P, Ishikawa Y, Fujita T, Tanaka N, Chen M, Zhang L, Hirata A, Erlebacher J, Tokunaga T, McKenna K, Yamamoto Y, Yamamoto Y, Asao N (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11:775–780. CrossRefGoogle Scholar
  4. 4.
    Zhang X, Ding Y (2013) Unsupported nanoporous gold for heterogeneous catalysis. Catal Sci Technol 3:2862–2868. CrossRefGoogle Scholar
  5. 5.
    Kramer D, Viswanath RN, Weissmüller J (2004) Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett 4:793–796. CrossRefGoogle Scholar
  6. 6.
    Knoll W, Erlebacher J, Majoral J-P, Ahl S, Caminade A-M, Yu F (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78:7346–7350. CrossRefGoogle Scholar
  7. 7.
    Wittstock A, Biener J, Bäumer M (2010) Nanoporous gold: a new material for catalytic and sensor applications. Phys Chem Chem Phys 12:12919–12930. CrossRefGoogle Scholar
  8. 8.
    Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236. CrossRefGoogle Scholar
  9. 9.
    Xia R, Xu C, Wu W, Li X, Feng XQ, Ding Y (2009) Microtensile tests of mechanical properties of nanoporous Au thin films. J Mater Sci 44:4728–4733. CrossRefGoogle Scholar
  10. 10.
    Gwak EJ, Jeon H, Song E, Kang NR, Kim JY (2018) Twinned nanoporous gold with enhanced tensile strength. Acta Mater 155:253–261. CrossRefGoogle Scholar
  11. 11.
    Sun YE, Ye JIA, Minor AM, Balk TJ (2009) In situ indentation of nanoporous gold thin films in the transmission electron microscope. Microsc Res Tech 72:232–241. CrossRefGoogle Scholar
  12. 12.
    Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A Math Phys Sci 382:43–59. CrossRefGoogle Scholar
  13. 13.
    Biener J, Hodge AM, Hamza AV, Hsiung LM, Satcher JH (2005) Nanoporous Au: a high yield strength material. J Appl Phys 97:2–5. CrossRefGoogle Scholar
  14. 14.
    Hodge A, Hayes J, Caro J, Biener J, Hamza A (2006) Characterization and mechanical behavior of nanoporous gold. Adv Eng Mater 8:853–857. CrossRefGoogle Scholar
  15. 15.
    Jin HJ, Kurmanaeva L, Ro H, Ivanisenko Y, Schmauch J, Rösner H, Ivanisenko Y, Weissmüller J (2009) Deforming nanoporous metal : role of lattice coherency. Acta Mater C 57:2665–2672. CrossRefGoogle Scholar
  16. 16.
    Badwe N, Chen X, Sieradzki K (2017) Mechanical properties of nanoporous gold in tension. Acta Mater 129:251–258. CrossRefGoogle Scholar
  17. 17.
    Briot NJ, Kennerknecht T, Eberl C, Balk TJ (2014) Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos Mag 94:847–866. CrossRefGoogle Scholar
  18. 18.
    Balk TJ, Eberl C, Sun Y, Hemker KJ, Gianola DS (2009) Tensile and compressive microspecimen testing of bulk nanoporous gold. JOM 61:26–31. CrossRefGoogle Scholar
  19. 19.
    Zheng H, Cao A, Weinberger CR, Huang JY, Du K, Wang J, Ma Y, Xia Y, Mao SX (2010) Discrete plasticity in sub-10-nm-sized gold crystals. Nat Commun 1:144–148. CrossRefGoogle Scholar
  20. 20.
    Dou R, Derby B (2011) Deformation mechanisms in gold nanowires and nanoporous gold. Philos Mag 91:1070–1083. CrossRefGoogle Scholar
  21. 21.
    Sun XY, Xu GK, Li X, Feng XQ, Gao H (2013) Mechanical properties and scaling laws of nanoporous gold. J Appl Phys 113:023505. CrossRefGoogle Scholar
  22. 22.
    Sun Y, Ye J, Shan Z, Minor AM, Balk TJ (2007) The mechanical behavior of nanoporous gold thin films. JOM J Miner Met Mater Soc 59:54–58. CrossRefGoogle Scholar
  23. 23.
    Lu Y, Song J, Huang JY, Lou J (2011) Fracture of Sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21:3982–3989CrossRefGoogle Scholar
  24. 24.
    Jiao J, Huber N (2017) Deformation mechanisms in nanoporous metals: effect of ligament shape and disorder. Comput Mater Sci 127:194–203. CrossRefGoogle Scholar
  25. 25.
    Hu K, Ziehmer M, Wang K, Lilleodden ET (2016) Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philos Mag 96:3322–3335. CrossRefGoogle Scholar
  26. 26.
    Afanasyev K, Sansoz F, Afanasyev SF, Konstantin A (2007) Strengthening in gold-nanopillars with nanoscale twins. Nano Lett 7:2056–2062. CrossRefGoogle Scholar
  27. 27.
    Sun S, Chen X, Badwe N, Sieradzki K (2015) Potential-dependent dynamic fracture of nanoporous gold. Nat Mater 14:1–6. CrossRefGoogle Scholar
  28. 28.
    Liu P, Wei X, Song S, Wang L, Hirata A, Fujita T, Han X, Zhang Z, Chen M (2019) Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater 165:99–108CrossRefGoogle Scholar
  29. 29.
    Li R, Sieradzki K (1992) Ductile-brittle transition in random porous Au. Phys Rev Lett 68:1168–1171. CrossRefGoogle Scholar
  30. 30.
    Sato K, Miyazaki H, Gondo T, Miyazaki S, Murayama M, Hata S (2016) Development of a novel straining holder for TEM compatible with electron tomography. In: 2016 Proceedings of European microscopy congress, Wiley, Hoboken, pp 287–288Google Scholar
  31. 31.
    Stuckner J, Frei K, McCue I, Demkowicz MJ, Murayama M (2017) AQUAMI: an open source python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Comput Mater Sci 139:320–329. CrossRefGoogle Scholar
  32. 32.
    Farkas D, Caro A, Bringa E, Crowson D (2013) Mechanical response of nanoporous gold. Acta Mater 61:3249–3256. CrossRefGoogle Scholar
  33. 33.
    Crowson DA, Farkas D, Corcoran SG (2009) Mechanical stability of nanoporous metals with small ligament sizes. Scr Mater 61:497–499. CrossRefGoogle Scholar
  34. 34.
    Warner DH, Curtin WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trends in fcc metals. Nat Mater 6:876CrossRefGoogle Scholar
  35. 35.
    Stuckner J, Frei K, Corcoran SG, Reynolds WT, Murayama M (under review) Assessing the influence of processing parameters and external loading on the nanoporous structure and morphology of nanoporous gold toward catalytic applicationsGoogle Scholar
  36. 36.
    Briot NJ, Balk TJ (2018) Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Commun 8:132–136. CrossRefGoogle Scholar
  37. 37.
    Farkas D, Stuckner J, Umbel R, Kuhr B, Demkowicz MJ (2018) Indentation response of nanoporous gold from atomistic simulations. J Mater Res 33:1382–1390. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations