Advertisement

Journal of Materials Science

, Volume 54, Issue 18, pp 11903–11912 | Cite as

Coexistence of superconductivity and ferromagnetism in defect-induced NbSe2 single crystals

  • Rukshana Pervin
  • Manikandan Krishnan
  • Arumugam Sonachalam
  • Parasharam M. ShirageEmail author
Electronic materials
  • 30 Downloads

Abstract

Here, we report the coexistence of superconductivity (SC) and ferromagnetism (FM), which are considered as two exclusive phenomena. We have grown NbSe2 single crystals by chemical vapor transport method. In NbSe2, we have intentionally created Se deficiency (i.e., NbSe1.85) by substitution of Fe atoms (i.e., Fe0.0015NbSe-2). The temperature-dependent resistance measurements confirm that both Se and Fe defects decrease the superconducting transition temperature (Tc) due to the presence of disorder as well as enhancement of scattering phenomena of charge carriers. Subsequently, the temperature-dependent magnetization measurement gives the signature of coexistence of SC and FM in NbSe1.85. Interestingly, there is no such evidence in case of Fe0.0015NbSe2. The Tc and TFM are estimated from the derivative plot of DC susceptibility curves. It reveals that the bulk SC with FM in NbSe1.85 is obtained up to 0.05 T. Further, the M–H plot confirms the coexistence of SC and FM in NbSe1.85 at 2 K. In addition, the upper limit of superconductivity at different temperatures for NbSe1.85 and Fe0.0015NbSe2 is calculated which reflects the superposition region of SC and FM in NbSe1.85 and the suppression of the SC in Fe0.0015NbSe2 as compared to NbSe2. This study not only provides the role of defects in SC and FM properties but also encourages to study the effect of defects on other types of superconducting materials.

Notes

Acknowledgements

This work was supported by Department of Science and Technology (SERB-DST), India, by acknowledging prestigious ‘Ramanujan Fellowship’ award (SR/S2/RJN-121/2012) and a CSIR support project (Grant No. 03(1349)/16/EMR-II) to PMS. PMS acknowledges Prof. Pradeep Mathur, Director of IIT Indore and SIC for providing accessibility to equipments for research. The author RP is grateful to DST for the esteemed SRF Inspire fellowship (DST/INSPIRE/03/2014/004196). The author MK thanks UGC-RGNF-JRF for admitting its meritorious fellowship. The author SA thanks DST (SERB, FIST, PURSE), BRNS, DRDO, UGC-SAP and CEFIPRA for assisting financially. The authors also convey gratitude to Dr. R. Rawat, Scientist, UGC-DAE Consortium for Scientific Research, Indore, for providing low-temperature four-probe resistivity measurement facility.

References

  1. 1.
    Coronado E, Gastaldo CM, Moratalla EN, Ribera A, Blundell SJ, Baker PJ (2010) Coexistence of superconductivity and magnetism by chemical design. Nat Chem 2:1031–1036CrossRefGoogle Scholar
  2. 2.
    Linder J, Robinson JWA (2015) Superconducting spintronics. Nat Phys 11:307–315CrossRefGoogle Scholar
  3. 3.
    Li L, Richter C, Mannhart J, Ashoori RC (2011) Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat Phys 7:762–766CrossRefGoogle Scholar
  4. 4.
    Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Bruckner F, Sarkar R, Klauss HH, Johrendt D (2014) Coexistence of 3d-ferromagnetism and superconductivity in [(Li1–xFex) OH] (Fe1–yLiy)Se. Angew Chem Int Ed 54:293–335CrossRefGoogle Scholar
  5. 5.
    Blatter G, Feigel’man MV, Geshkenbein VB, Larkin AI, Vinokur VM (1994) Vortices in high-temperature superconductors. Rev Mod Phys 66:1125–1388CrossRefGoogle Scholar
  6. 6.
    Bulaevskii LN, Buzdin AI, Kulić ML, Panjukov SV (1985) Coexistence of superconductivity and magnetism theoretical predictions and experimental results. Adv Phys 34:175–261CrossRefGoogle Scholar
  7. 7.
    Matthais BT, Suhl H, Corenzwit E (1985) Spin exchange in superconductors. Phys Rev Lett 1:92CrossRefGoogle Scholar
  8. 8.
    Fertig WA, Johnston DC, DeLong LE, McCallum RW, Maple MB, Matthias BT (1977) Destruction of superconductivity at the onset of long-range magnetic order in the compound ErRh4B4. Phys Rev Lett 38:987–990CrossRefGoogle Scholar
  9. 9.
    Ishikawa M, Fischer Ø (1977) Destruction of superconductivity by magnetic ordering in Ho1.2Mo6S8. Solid State Commun 23:37–39CrossRefGoogle Scholar
  10. 10.
    Felner I, Asaf U, Levi Y, Millo O (1997) Coexistence of magnetism and superconductivity in R1.4Ce0.6 RuSr2Cu2O10−δs(R = Eu and Gd). Phys Rev B 55:3374CrossRefGoogle Scholar
  11. 11.
    Bernhard C, Tallon JL, Niedermayer C, Blasius T, Golnik A, Brücher E, Kremer RK, Noakes DR, Stronach CE, Ansaldo EJ (1999) Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization. Phys. Rev. B 59:14099CrossRefGoogle Scholar
  12. 12.
    Saxena SS, Agarwal P, Ahilan K et al (2000) Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature 406:587–592CrossRefGoogle Scholar
  13. 13.
    Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison JP, Lhotel E, Paulsen C (2001) Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413:613–616CrossRefGoogle Scholar
  14. 14.
    Lu JM, Zheliuk O, Leermakers I, Yuan NFQ, Zeitler U, Law KT, Ye JT (2015) Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350:1353–1357CrossRefGoogle Scholar
  15. 15.
    Zhu X, Guo Y, Cheng H, Dai J, An X, Zhao J, Tian K, Wei S, Zheg XC, Wu C, Xie Y (2016) Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat Commun 7:11210CrossRefGoogle Scholar
  16. 16.
    Li Z, Zhao Y, Mu K, Shan H, Guo Y, Wu J, Su Y, Wu Q, Sun Z, Zhao A, Cui X, Wu C, Xie Y (2017) Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J Am Chem Soc 139:16398–16404CrossRefGoogle Scholar
  17. 17.
    Kumar P, Skomski R, Pushpa R (2017) Magnetically ordered transition-metal-intercalated WSe2. ACS Omega 2:7985–7990CrossRefGoogle Scholar
  18. 18.
    Horzum S, Çakır D, Suh J, Tongay S, Huang Y-S, Ho C-H, Wu J, Sahin H, Peeters FM (2014) Formation and stability of point defects in monolayer rhenium disulfide. Phys Rev B 89:155433CrossRefGoogle Scholar
  19. 19.
    Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc 137:2622–2627CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X, Gao F (2012) Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 6:9727–9736CrossRefGoogle Scholar
  21. 21.
    Zheng H, Yang B, Wang D, Han R, Du X, Yan Y (2014) Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett 104:132403CrossRefGoogle Scholar
  22. 22.
    Manchanda P, Sharma V, Yu H, Sellmyer DJ, Skomski R (2015) Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation. Appl Phys Lett 107:032402CrossRefGoogle Scholar
  23. 23.
    Xiang Z, Zhang Z, Xu X, Zhang Q, Wang Q, Yuan C (2015) Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys Chem Chem Phys 17:15822–15828CrossRefGoogle Scholar
  24. 24.
    Tedstone AA, Lewis DJ, O’Brian P (2016) Synthesis, properties, and applications of transition metal doped layered transition metal dichalcogenides. Chem Mater 28:1965–1974CrossRefGoogle Scholar
  25. 25.
    Shu H, Luo P, Liang P, Cao D, Chen X (2015) Layer-dependent dopant stability and magnetic exchange coupling of iron-doped MoS2 nanosheets. ACS Appl Mater Interfaces 7:7534–7541CrossRefGoogle Scholar
  26. 26.
    Prodan A, Marinkovic V, Rojsek M, Jug N, Van Midden HJP, Boswell FW, Bennett JC, Bohm H (2001) The surface superstructures in niobium disulfide and diselenide intercalated by Cu, Co and Fe. Surf Sci 476:71–77CrossRefGoogle Scholar
  27. 27.
    Ugeda MM, Bradley AJ, Zhang Y et al (2016) Characterization of collective ground states in single-layer NbSe2. Nat Phys 12:92–96CrossRefGoogle Scholar
  28. 28.
    Huang CL, Lin J-Y, Chang YT, Sun CP, Shen HY, Chou CC, Berger H, Lee TK, Yang HD (2007) Experimental evidence for a two-gap structure of superconducting NbSe2: a specific-heat study in external magnetic fields. Phys Rev B 76:212504CrossRefGoogle Scholar
  29. 29.
    Malliakas CD, Kanatzidis MG (2013) Nb–Nb interactions define the charge density wave structure of 2H-NbSe2. J Am Chem Soc 135:1719–1722CrossRefGoogle Scholar
  30. 30.
    Manchanda P, Skomski R (2017) Defect-induced magnetism in two-dimensional NbSe2. Superlattices Microstruct 101:349–353CrossRefGoogle Scholar
  31. 31.
    Voorhoeve-van Den Berg JM, Sherwood RC (1971) Low-temperature magnetic susceptibilities of NbSe2 containing the first-row transition metals. J Phys Chem Solids 32:167–173CrossRefGoogle Scholar
  32. 32.
    Pervin R, Krishnan M, Rana AK, Kannan M, Arumugam S, Shirage PM (2017) Enhancement of superconducting critical current density by Fe impurity substitution in NbSe2 single crystals and the vortex pinning mechanism. Phys Chem Chem Phys 19:11230CrossRefGoogle Scholar
  33. 33.
    Krishnan M, Pervin R, Ganesan KS, Murugesan K, Lingannan G, Verma AK, Shirage PM, Sonachalam A (2018) Pressure assisted enhancement in superconducting properties of Fe substituted NbSe2 single crystal. Sci Rep 8:1251CrossRefGoogle Scholar
  34. 34.
    Mattheiss LF (1973) Energy bands for 2H-NbSe2 and 2H-MoS2. Phys Rev Lett 30:784CrossRefGoogle Scholar
  35. 35.
    Chen L, Li C, Tang H, Li H, Liu X, Meng J (2014) First-principles calculations on structural, electronic properties of V-doped 2H-NbSe2. RSC Adv 4:9573–9578CrossRefGoogle Scholar
  36. 36.
    Luo H, Nowak JS, Li J, Tao J, Klimczuk T, Cava RJ (2017) S–shaped suppression of the superconducting transition temperature in Cu-intercalated NbSe2. Chem Mater 29:3704–3712CrossRefGoogle Scholar
  37. 37.
    Li L, Li Y, Jin Y et al (2015) Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2. Phys Rev B 91:14508CrossRefGoogle Scholar
  38. 38.
    Thakur GS, Fuchs G, Nenkov K, Haque Z, Gupta LC, Ganguly AK (2016) Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with T c < TFM. Sci. Sci Rep 6:37526CrossRefGoogle Scholar
  39. 39.
    Menard GC et al (2015) Coherent long-range magnetic bound states in a superconductor. Nat Phys 11:1013–1016CrossRefGoogle Scholar
  40. 40.
    Pervin R, Krishnan M, Rana AK, Arumugam S, Shirage PM (2018) Effect of Cr atoms in vortex dynamics of NbSe2 superconductor and study of second magnetization peak effect. Mater Res Express 5:076001CrossRefGoogle Scholar
  41. 41.
    Zehetmayer M, Weber HW (2010) Experimental evidence for a two-band superconducting state of NbSe2 single crystals. Phys Rev B 82:014524CrossRefGoogle Scholar
  42. 42.
    Bardeen J, Cooper LN, Schrieffer JR (1957) Microscopic theory of superconductivity. Phys Rev 106:162–164CrossRefGoogle Scholar
  43. 43.
    Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175–1204CrossRefGoogle Scholar
  44. 44.
    Ilić S, Meyer JS, Houzet M (2017) Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers. Phys Rev Lett 119:117001CrossRefGoogle Scholar
  45. 45.
    Aoki D, Flouquet J (2012) Ferromagnetism and superconductivity in uranium compounds. J Phys Soc Jpn 81:11003CrossRefGoogle Scholar
  46. 46.
    Li SL, Wen HH, Zhao ZW, Ni YM, Ren ZA, Che GC, Yang HP, Liu ZY, Zhao ZX (2001) Linear temperature dependence of lower critical field in MgB2. Phys Rev B 64:094522CrossRefGoogle Scholar
  47. 47.
    Arumugam S, Krishnan M, Ishigaki K, Gouchi J, Pervin R, Selvan GK, Shirage PM, Uwatoko Y (2019) Enhancement of superconducting properties and flux pinning mechanism on Cr0.0005NbSe2 single crystal under Hydrostatic pressure. Sci Rep 9:347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreSimrolIndia
  2. 2.Centre of High Pressure Research, School of PhysicsBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations