Journal of Materials Science

, Volume 54, Issue 18, pp 11991–11999 | Cite as

Preparation of (Vx, Ti1−x)2C MXenes and their performance as anode materials for LIBs

  • Ying Wang
  • Wei Zheng
  • Peigen ZhangEmail author
  • Wubian Tian
  • Jian Chen
  • ZhengMing SunEmail author
Energy materials


MXenes as anode materials for Li-ion batteries (LIBs) have shown excellent electrochemical performance, and they still have great potential. To explore the effect of chemical composition on their electrochemical performance, herein we report an approach for preparation of (Vx, Ti1−x)2C MXenes (x = 1, 0.7, 0.5, 0.3, 0) via etching their precursor solid solutions of (Vx, Ti1−x)2AlC. The exfoliated (Vx, Ti1−x)2C MXenes with good multilayered morphology exhibit good electrochemical properties when used as anodes of LIBs, and the electrochemical performance is optimized for the solid solution of (V0.5, Ti0.5)2C which possesses the highest reversible capacity of 204.9 mAh g−1 and a coulombic efficiency of nearly 100% at 1 A g−1. The heteroatoms in M site of MXene are responsible for the enhanced lithium storage performance.



This work was supported by the Grants of National Natural Science Foundation of China (51731004 and 51671054) and Zhishan Youth Scholar Program of SEU.


  1. 1.
    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005. CrossRefGoogle Scholar
  2. 2.
    Sun ZM (2013) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56(3):143–166. CrossRefGoogle Scholar
  3. 3.
    Zhou S, Yang X, Pei W, Liu N, Zhao J (2018) Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10(23):10876–10883. CrossRefGoogle Scholar
  4. 4.
    Naguib MMO, Carle J (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331CrossRefGoogle Scholar
  5. 5.
    Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969. CrossRefGoogle Scholar
  6. 6.
    Chang F, Li C, Yang J, Tang H, Xue M (2013) Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2. Mater Lett 109:295–298. CrossRefGoogle Scholar
  7. 7.
    Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9(10):9451–9459CrossRefGoogle Scholar
  8. 8.
    Sun D, Wang M, Li Z, Fan G, Fan L-Z, Zhou A (2014) Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun 47:80–83. CrossRefGoogle Scholar
  9. 9.
    Zhu J, Chroneos A, Eppinger J, Schwingenschlögl U (2016) S-functionalized MXenes as electrode materials for Li-ion batteries. Appl Mater Today 5:19–24. CrossRefGoogle Scholar
  10. 10.
    Yan P, Zhang R, Jia J, Wu C, Zhou A, Xu J, Zhang X (2015) Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J Power Sources 284:38–43. CrossRefGoogle Scholar
  11. 11.
    Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, Wang L (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38:368–376. CrossRefGoogle Scholar
  12. 12.
    Wang H, Zhang J, Wu Y, Huang H, Jiang Q (2018) Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J Phys Chem Solids 115:172–179. CrossRefGoogle Scholar
  13. 13.
    Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, Huang Y, Wang Z, Li H, Huang Q, Zhi C (2016) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6(21):1600969. CrossRefGoogle Scholar
  14. 14.
    Wang B, Zhou A, Liu F, Cao J, Wang L, Hu Q (2018) Carbon dioxide adsorption of two-dimensional carbide MXenes. J Adv Ceram 7(3):237–245. CrossRefGoogle Scholar
  15. 15.
    Zhao D, Clites M, Ying G, Kota S, Wang J, Natu V, Wang X, Pomerantseva E, Cao M, Barsoum MW (2018) Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem Commun 54(36):4533–4536. CrossRefGoogle Scholar
  16. 16.
    Bao W, Liu L, Wang C, Choi S, Wang D, Wang G (2018) Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Advanced Energy Materials 8(13):1702485. CrossRefGoogle Scholar
  17. 17.
    Hong Ng VM, Huang H, Zhou K, Lee PS, Que W, Xu JZ, Kong LB (2017) Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A 5:3039–3068. CrossRefGoogle Scholar
  18. 18.
    Halim J, Palisaitis J, Lu J, Thörnberg J, Moon EJ, Precner M, Eklund P, Persson POÅ, Barsoum MW, Rosen J (2018) Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Appl Nano Mater 1(6):2455–2460. CrossRefGoogle Scholar
  19. 19.
    Yoon Y, Lee M, Kim SK, Bae G, Song W, Myung S, Lim J, Lee SS, Zyung T, An K-S (2018) A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Adv Energy Mater 8(15):1703173. CrossRefGoogle Scholar
  20. 20.
    Yang C, Que W, Yin X, Tian Y, Yang Y, Que M (2017) Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta 225:416–424. CrossRefGoogle Scholar
  21. 21.
    Li J, Yan D, Hou S, Li Y, Lu T, Yao Y, Pan L (2018) Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J Mater Chem A 6(3):1234–1243. CrossRefGoogle Scholar
  22. 22.
    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, Kent PR, Gogotsi Y, Barsoum MW (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10):9507–9516. CrossRefGoogle Scholar
  23. 23.
    Yang J, Naguib M, Ghidiu M, Pan L-M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum MW, Zhou Y (2016) Two-dimensional Nb-based M4C3 Solid Solutions (MXenes). J Am Ceram Soc 99(2):660–666. CrossRefGoogle Scholar
  24. 24.
    Wu M, Wang B, Hu Q, Wang L, Zhou A (2018) The synthesis process and thermal stability of V(2)C MXene. Materials 11(11):2112. CrossRefGoogle Scholar
  25. 25.
    Sun D, Hu Q, Chen J, Zhang X, Wang L, Wu Q, Zhou A (2016) Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: a first-principles investigation. ACS Appl Mater Interfaces 8(1):74–81. CrossRefGoogle Scholar
  26. 26.
    Liu F (2017) Preparation of high-purity V2C MXene and electrochemical properties as li-ion batteries. J Electrochem Soc 164(4):A709–A713. CrossRefGoogle Scholar
  27. 27.
    Zhou J, Gao S, Guo Z, Sun Z (2017) Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram Int 43(14):11450–11454. CrossRefGoogle Scholar
  28. 28.
    Meng FL, Zhou YC, Wang JY (2005) Strengthening of Ti2AlC by substituting Ti with V. Scripta Mater 53(12):1369–1372. CrossRefGoogle Scholar
  29. 29.
    Freyer N, Pirug G, Bonzel HP (1983) C(1s) spectroscopy of hydrocarbons adsorbed on Pt(111). Surf Sci 126:487–494CrossRefGoogle Scholar
  30. 30.
    Chiang Y-C, Lee C-Y, Lee H-C (2007) Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment. Mater Chem Phys 101(1):199–210. CrossRefGoogle Scholar
  31. 31.
    Onoe J, Takeuchi K, Ohno K, Kawazoe Y (1998) X-ray photoelectron spectroscopy of air-exposed C60 films: origin of the O1s core peak. J Vac Sci Technol A Vac Surf Films 16(2):385–388. CrossRefGoogle Scholar
  32. 32.
    Come J, Naguib M, Rozier P, Barsoum MW, Gogotsi Y, Taberna PL, Morcrette M, Simon P (2012) A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J Electrochem Soc 159(8):A1368–A1373. CrossRefGoogle Scholar
  33. 33.
    Zhou J, Zha X, Zhou X, Chen F, Gao G, Wang S, Shen C, Chen T, Zhi C, Eklund P, Du S, Xue J, Shi W, Chai Z, Huang Q (2017) Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11(4):3841–3850. CrossRefGoogle Scholar
  34. 34.
    Xie Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu X, Nam KW, Yang XQ, Kolesnikov AI, Kent PR (2014) Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 136(17):6385–6394. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations