Advertisement

Two-dimensional silicon phosphide: low effective mass and direct band gap for future devices applications

  • Shivam Kansara
  • Prabal Dev Bhuyan
  • Yogesh Sonvane
  • Sanjeev K. GuptaEmail author
Electronic materials
  • 9 Downloads

Abstract

The band engineering using strain and electric field of monolayer silicon phosphide (2D-SiP) has been investigated by first-principle calculation. The biaxial strain is used to tune the electronic band gap from 1.91 to 0.7 eV by applying compressive strain 0–10% and 1.91–1.0 eV by tensile strain from 0 to 12%. Furthermore, SiP shows metallic behaviour beyond 12% of compressive strain and 14% of tensile strain. However, the negligible effect of the external electric field on the electronic band structure of 2D SiP shows the sustainability of the monolayer. The stress vs strain curve shows the excellent mechanical stability of the monolayer SiP. 2D SiP also shows low electron effective mass for higher carrier mobility. Further, optical properties of the monolayer show the UV region absorption. Our results provide insights to possible mechanical tuning of SiP monolayer by applying external strain for nano-electronic and nano-optoelectronic device application.

Notes

Supplementary material

10853_2019_3753_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2070 kb)

References

  1. 1.
    Tang Q, Zhou Z, Chen Z (2015) Innovation and discovery of graphene-like materials via density-functional theory computations. Wiley Interdiscip Rev Comput Mol Sci 5:360–379.  https://doi.org/10.1002/wcms.1224 CrossRefGoogle Scholar
  2. 2.
    Ma F, Jiao Y, Gao G, et al (2016) Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition. https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b05292. Accessed 15 May 2018
  3. 3.
    Kou L, Chen C, Smith SC (2015) Phosphorene: fabrication, properties, and applications. J Phys Chem Lett 6:2794–2805.  https://doi.org/10.1021/acs.jpclett.5b01094 CrossRefGoogle Scholar
  4. 4.
    Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926.  https://doi.org/10.1021/nn400280c CrossRefGoogle Scholar
  5. 5.
    Kansara S, Gupta SK, Sonvane Y, Srivastava A (2018) Switching mechanism of CO2 by alkaline earth atoms decorated on g-B4N3 nanosheet. ArXiv180511283 Cond-MatGoogle Scholar
  6. 6.
    Jha PK, Soni HR (2014) Strain induced modification in phonon dispersion curves of monolayer boron pnictides. J Appl Phys 115:023509.  https://doi.org/10.1063/1.4854656 CrossRefGoogle Scholar
  7. 7.
    Dong L, Namburu RR, O’Regan TP et al (2014) Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J Mater Sci 49:6762–6771.  https://doi.org/10.1007/s10853-014-8370-5 CrossRefGoogle Scholar
  8. 8.
    Majidiyan Sarmazdeh M, Mendi RT, Mirzaei M, Motie I (2017) Investigation of the electronic and optical properties of ZnS monolayer nanosheet: first principles calculations. J Mater Sci 52:3003–3015.  https://doi.org/10.1007/s10853-016-0555-7 CrossRefGoogle Scholar
  9. 9.
    Liu J, Ma Y, Zhao M et al (2018) Strain effects on the magnetism of transition metal-doped MoTe2 monolayer. J Mater Sci 53:5114–5124.  https://doi.org/10.1007/s10853-017-1917-5 CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Zhao Y, Ouyang G (2017) Strain modulation of electronic properties of monolayer black phosphorus. J Phys Chem C 121:19296–19304CrossRefGoogle Scholar
  11. 11.
    Sun Y, Liu K (2019) Strain engineering in functional 2-dimensional materials. J Appl Phys 125:082402CrossRefGoogle Scholar
  12. 12.
    Zhang S, Guo S, Huang Y et al (2017) Two-dimensional SiP: an unexplored direct band-gap semiconductor. 2D Mater 4:015030.  https://doi.org/10.1088/2053-1583/4/1/015030 CrossRefGoogle Scholar
  13. 13.
    Yang J-H, Zhang Y, Yin W-J et al (2016) Two-dimensional SiS layers with promising electronic and optoelectronic properties: theoretical prediction. Nano Lett 16:1110–1117.  https://doi.org/10.1021/acs.nanolett.5b04341 CrossRefGoogle Scholar
  14. 14.
    Tongay S, Sahin H, Ko C et al (2014) Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun 5:3252.  https://doi.org/10.1038/ncomms4252 CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Liao C, Ouyang G (2018) Band engineering in twisted molybdenum disulfide bilayers. J Phys Appl Phys 51:185101.  https://doi.org/10.1088/1361-6463/aab759 CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Tang T-T, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823.  https://doi.org/10.1038/nature08105 CrossRefGoogle Scholar
  17. 17.
    Yang Z, Ni J (2010) Modulation of electronic properties of hexagonal boron nitride bilayers by an electric field: a first principles study. J Appl Phys 107:104301.  https://doi.org/10.1063/1.3373571 CrossRefGoogle Scholar
  18. 18.
    Balu R, Zhong X, Pandey R, Karna SP (2012) Effect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers. Appl Phys Lett 100:052104.  https://doi.org/10.1063/1.3679174 CrossRefGoogle Scholar
  19. 19.
    Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer transition-metal dichalcogenides. Phys Rev B 84:205325.  https://doi.org/10.1103/PhysRevB.84.205325 CrossRefGoogle Scholar
  20. 20.
    Kansara S, Gupta SK, Sonvane Y (2018) Effect of strain engineering on 2D dichalcogenides transition metal: a DFT study. Comput Mater Sci 141:235–242.  https://doi.org/10.1016/j.commatsci.2017.09.037 CrossRefGoogle Scholar
  21. 21.
    Liao C, Zhao Y, Ouyang G (2018) Strain-modulated band engineering in two-dimensional black phosphorus/MoS2 van der Waals heterojunction. ACS Omega 3:14641–14649CrossRefGoogle Scholar
  22. 22.
    Benaissa M, Sigle W, Zaari H et al (2017) Strain and size combined effects on the GaN band structure: VEELS and DFT study. Phys Chem Chem Phys 19:5430–5434.  https://doi.org/10.1039/C6CP08642J CrossRefGoogle Scholar
  23. 23.
    Ma Z, Zhuang J, Zhang X, Zhou Z (2018) SiP monolayers: new 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Front Phys 13:138104.  https://doi.org/10.1007/s11467-018-0760-8 CrossRefGoogle Scholar
  24. 24.
    Huang B, Zhuang HL, Yoon M et al (2015) Unexpected stable two-dimensional silicon phosphides with different stoichiometries [Highly stable two-dimensional silicon phosphides: different stoichiometries and exotic electronic properties]. Phys Rev B Condens Matter Mater Phys.  https://doi.org/10.1103/PhysRevB.91.121401 Google Scholar
  25. 25.
    Ashton M, Paul J, Sinnott SB, Hennig RG (2017) Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys Rev Lett 118:106101.  https://doi.org/10.1103/PhysRevLett.118.106101 CrossRefGoogle Scholar
  26. 26.
    Barreteau C, Michon B, Besnard C, Giannini E (2016) High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J Cryst Growth 443:75–80.  https://doi.org/10.1016/j.jcrysgro.2016.03.019 CrossRefGoogle Scholar
  27. 27.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  29. 29.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  30. 30.
    Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175:1–14.  https://doi.org/10.1016/j.cpc.2006.03.005 CrossRefGoogle Scholar
  31. 31.
    Fox M (2010) Optical properties of solids. Oxford University Press, OxfordGoogle Scholar
  32. 32.
    Bhuyan PD, Singh D, Kansara S et al (2017) Experimental and theoretical analysis of electronic and optical properties of MgWO4. J Mater Sci 52:4934–4943.  https://doi.org/10.1007/s10853-016-0730-x CrossRefGoogle Scholar
  33. 33.
    Gibbs GV, Downs RT, Cox DF et al (2008) Experimental bond critical point and local energy density properties determined for Mn − O, Fe − O, and Co − O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: comparison with properties calculated for non-transition and transition metal M − O bonded interactions for silicates and oxides. J Phys Chem A 112:8811–8823.  https://doi.org/10.1021/jp804280j CrossRefGoogle Scholar
  34. 34.
    Kole A, Radhakrishnan K (2017) Study of potential change, charge distribution, voltage drop, band lineup, and transmission spectrum of molecular break junction under low bias. J Phys Chem C 121:12903–12910.  https://doi.org/10.1021/acs.jpcc.7b02151 CrossRefGoogle Scholar
  35. 35.
    Duarte DJR, Sosa GL, Peruchena NM (2013) Nature of halogen bonding. A study based on the topological analysis of the laplacian of the electron charge density and an energy decomposition analysis. J Mol Model 19:2035–2041.  https://doi.org/10.1007/s00894-012-1624-8 CrossRefGoogle Scholar
  36. 36.
    Selvaraju K, Kumaradhas P (2015) Charge density analysis and transport properties of TTF based molecular nanowires: a DFT approach. J Nanosci 2015:806181.  https://doi.org/10.1155/2015/806181 CrossRefGoogle Scholar
  37. 37.
    Jacobsen H (2010) Kinetic energy density and covalent bonding—a complementary analysis at the border of bond and no bond. Dalton Trans 39:5426–5428.  https://doi.org/10.1039/C0DT00083C CrossRefGoogle Scholar
  38. 38.
    Phuc HV, Hieu NN, Hoi BD et al (2018) Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations. J Electron Mater 47:730–736.  https://doi.org/10.1007/s11664-017-5843-8 CrossRefGoogle Scholar
  39. 39.
    Li P, Li L, Cheng Zeng X (2016) Tuning the electronic properties of monolayer and bilayer PtSe2 via strain engineering. J Mater Chem C 4:3106–3112.  https://doi.org/10.1039/C6TC00130K CrossRefGoogle Scholar
  40. 40.
    Landmann M, Rauls E, Schmidt WG et al (2013) Transition energies and direct-indirect band gap crossing in zinc-blende AlxGa1–xN. Phys Rev B 87:195210CrossRefGoogle Scholar
  41. 41.
    Li Y, Kang J, Li J (2014) Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations. RSC Adv 4:7396–7401.  https://doi.org/10.1039/C3RA46090H CrossRefGoogle Scholar
  42. 42.
    Peng X, Wei Q, Copple A (2014) Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys Rev B 90:085402.  https://doi.org/10.1103/PhysRevB.90.085402 CrossRefGoogle Scholar
  43. 43.
    Zhang Z, Zhao Y, Ouyang G (2017) Strain modulation of electronic properties of monolayer black phosphorus. J Phys Chem C 121:19296–19304.  https://doi.org/10.1021/acs.jpcc.7b06342 CrossRefGoogle Scholar
  44. 44.
    Beer FP, DeWolf JT, Johnston Jr ER (2013) Estática e mecânica dos materiais. AMGH EditoraGoogle Scholar
  45. 45.
    Zhang P, Meng F, Gong Z et al (2014) Pressure and tension effects on mechanical properties of ZrAl2. AIP Adv 4:117141.  https://doi.org/10.1063/1.4903171 CrossRefGoogle Scholar
  46. 46.
    Zhou X-F, Qian G-R, Dong X et al (2010) Ab initio study of the formation of transparent carbon under pressure. Phys Rev B 82:134126.  https://doi.org/10.1103/PhysRevB.82.134126 CrossRefGoogle Scholar
  47. 47.
    Kansara S, Sonvane Y, Gupta SK (2019) Modulation of vertical strain and electric field on C3As/arsenene heterostructure. Appl Nanosci.  https://doi.org/10.1007/s13204-019-01034-0 Google Scholar
  48. 48.
    Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B 87:155304.  https://doi.org/10.1103/PhysRevB.87.155304 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advance Materials Lab, Department of Applied PhysicsS.V. National Institute of TechnologySuratIndia
  2. 2.Computational Materials and Nanoscience Group, Department of Physics and ElectronicsSt. Xavier’s CollegeAhmedabadIndia

Personalised recommendations