Advertisement

One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor

  • Jibo JiangEmail author
  • Yaoxin Sun
  • Yukai Chen
  • Xiaomin Hu
  • Liying Zhu
  • Haotian Chen
  • Sheng HanEmail author
Energy materials
  • 22 Downloads

Abstract

Bimetallic sulfides are widely used in supercapacitor electrode materials. However, the sample preparation is usually complicated, and the followed performance is not very desirable generally. In this work, we report a one-step solvothermal method to synthesize Ni–Co–SX nanostructure which stacked into a pine cone structure. Noticeably, the optimized Ni–Co–S4 exhibited a high specific capacitance of 2215 F g−1 at a current density of 0.5 A g−1 and the capacitor retention rate is close to 90.16% after 10,000 cycles, which indicates that the cycle performance is superior. Moreover, Ni–Co–S4 can be used as the anode material coupled with cathodic activated carbon to assemble a high-performance asymmetric supercapacitor, revealing a high energy density of 36.6 Wh kg−1, a highest power density of 8.5 kW kg−1 with a capacitance retention of 85.06% after 10,000 cycles and an ability of lighting an LED for up to 15 min. The findings have implications to the design and control of the electrode materials for energy storage with high performance.

Notes

Acknowledgements

This work was supported by the Shanghai Excellent Technology Leaders Program (Project Number 17XD1424900), Science and Technology Commission of Shanghai Municipality Project (Project Number 18090503800) and Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201822).

Supplementary material

10853_2019_3746_MOESM1_ESM.doc (4.5 mb)
Supplementary material 1 (DOC 4608 kb)

References

  1. 1.
    Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat Energy 2:16202CrossRefGoogle Scholar
  2. 2.
    Yang P, Qu X, Liu K, Duan J, Li J, Chen Q, Xue G, Xie W, Xu Z, Zhou J (2018) Electrokinetic supercapacitor for simultaneous harvesting and storage of mechanical energy. ACS Appl Mater Interfaces 10:8010–8015CrossRefGoogle Scholar
  3. 3.
    Zou C, Zhao Q, Zhang G, Xiong B (2016) Energy revolution: from a fossil energy era to a new energy era ☆. Natl Gas Ind B 3:1–11CrossRefGoogle Scholar
  4. 4.
    Jie Y, Jia X, Zou J, Chen Y, Wang N, Wang ZL, Cao X (2018) Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv Energy Mater 8:1703133CrossRefGoogle Scholar
  5. 5.
    Liu Z, Chen Y, Zhuo R, Jia H (2017) Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling. Appl Energy 210:1113–1125CrossRefGoogle Scholar
  6. 6.
    Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J (2013) Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 5:1067–1073CrossRefGoogle Scholar
  7. 7.
    Qin T, Peng S, Hao J, Wen Y, Wang Z, Wang X, He D, Zhang J, Hou J, Cao G (2017) Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode. Adv Energy Mater 7:1700409CrossRefGoogle Scholar
  8. 8.
    Wang F, Zuo Z, Shang H, Zhao Y, Li Y (2019) Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode. ACS Appl Mater Interfaces 11:2599–2607CrossRefGoogle Scholar
  9. 9.
    Lu C, Huang YH, Wu YJ, Li J, Cheng JP (2018) Camellia pollen-derived carbon for supercapacitor electrode material. J Power Sources 394:9–16CrossRefGoogle Scholar
  10. 10.
    Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438CrossRefGoogle Scholar
  11. 11.
    Jia H, Cai Y, Lin J, Liang H, Qi J, Cao J, Feng J, Fei WD (2018) Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Advanced Science 5:1700887CrossRefGoogle Scholar
  12. 12.
    Sun H, Ma Z, Qiu Y, Liu H, Gao GG (2018) Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small 14:1800294CrossRefGoogle Scholar
  13. 13.
    Yang S, Liu Y, Hao Y, Yang X, Iii WAG, Zhang XL, Cao B (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5:1700659CrossRefGoogle Scholar
  14. 14.
    Wu X, Meng L, Wang Q, Zhang W, Wang Y (2017) A flexible asymmetric fibered-supercapacitor based on unique Co3O4@PPy core-shell nanorod arrays electrode. Chem Eng J 327:193–201CrossRefGoogle Scholar
  15. 15.
    Qu D (2002) Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 109:403–411CrossRefGoogle Scholar
  16. 16.
    Teng Z, Wan L, Sun S, Qi C, Jiao S, Xia Q, Hui X (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29:1604167CrossRefGoogle Scholar
  17. 17.
    Xu C, Li Z, Yang C, Zou P, Xie B, Lin Z, Zhang Z, Li B, Kang F, Wong CP (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:4105–4110CrossRefGoogle Scholar
  18. 18.
    Du J, Li K, Qian Y, Yang M, Wang H, He W, Harnchana V (2016) Porous NiCo2S4 networks as electrodes for electrochemical supercapacitors. NANO 11:1650133CrossRefGoogle Scholar
  19. 19.
    Yu XY, Yu L, Lou XW (2016) Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 6:1501333CrossRefGoogle Scholar
  20. 20.
    Zha D, Fu Y, Zhang L, Zhu J, Wang X (2018) Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J Power Sources 378:31–39CrossRefGoogle Scholar
  21. 21.
    Mohamed SG, Hussain I, Shim JJ (2018) One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10:6620–6628CrossRefGoogle Scholar
  22. 22.
    Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541CrossRefGoogle Scholar
  23. 23.
    Zhu B, Wang Z, Ding S, Chen J, Lou XD (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. Rsc Adv 1:397–400CrossRefGoogle Scholar
  24. 24.
    Chou S-W, Lin J-Y (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc 160:178–182CrossRefGoogle Scholar
  25. 25.
    Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L, Huang K, Zhong J (2014) One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceram Int 40:8189–8193CrossRefGoogle Scholar
  26. 26.
    Patil AM, Lokhande AC, Shinde PA et al (2018) Vertically aligned NiS nano-flakes derived from hydrothermally prepared Ni(OH)2 for high performance supercapacitor. J Energy Chem 27:791–800CrossRefGoogle Scholar
  27. 27.
    He J, Guo C, Zhou S et al (2018) Dual carbon-modified nickle sulfide composites toward high-performance electrodes for supercapacitors. Inorgan Chem Front 6:226–232CrossRefGoogle Scholar
  28. 28.
    Mohammadi A, Arsalani N, Tabrizi AG et al (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Shi Z, Lin T et al (2019) Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. J Power Sources 412:321–330CrossRefGoogle Scholar
  30. 30.
    Meng X, Deng J, Zhu J et al (2016) Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors. Sci Rep 6:321–330Google Scholar
  31. 31.
    Wan H, Ji X, Jiang J, Yu J, Miao L, Zhang L, Bie S, Chen H, Ruan Y (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402CrossRefGoogle Scholar
  32. 32.
    Li Y, Liu S, Chen W, Li S, Shi L, Zhao Y (2017) Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. J Alloy Compd 712:139–146CrossRefGoogle Scholar
  33. 33.
    Yang J, Yu C, Liang S, Li S, Huang H, Han X, Zhao C, Song X, Hao C, Ajayan PM (2016) Bridging of ultrathin NiCo2O4 nanosheets and graphene with polyaniline: a theoretical and experimental study. Chem Mater 28:5855–5863CrossRefGoogle Scholar
  34. 34.
    Nguyen VH, Lamiel C, Shim JJ (2015) Hierarchical mesoporous graphene@Ni–Co–S arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 161:351–357CrossRefGoogle Scholar
  35. 35.
    Xu S, Su C, Wang T, Ma Y, Hu J, Hu J, Hu N, Su Y, Zhang Y, Yang Z (2017) One-step electrodeposition of nickel cobalt sulfide nanosheets on Ni nanowire film for hybrid supercapacitor. Electrochim Acta 259:617–625CrossRefGoogle Scholar
  36. 36.
    Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9:1299–1307CrossRefGoogle Scholar
  37. 37.
    Mei L, Yang T, Xu C, Zhang M, Chen L, Li Q, Wang T (2014) Hierarchical mushroom-like CoNi2S 4 arrays as a novel electrode material for supercapacitors. Nano Energy 3:36–45CrossRefGoogle Scholar
  38. 38.
    Wei C, Zhan N, Tao J, Pang S, Zhang L, Cheng C, Zhang D (2018) Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl Surf Sci 453:288–296CrossRefGoogle Scholar
  39. 39.
    Han X, Chen Q, Zhang H et al (2019) Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem Eng J 368:513–524CrossRefGoogle Scholar
  40. 40.
    Cai X, Shen X, Ji Z et al (2017) Synthesis and remarkable capacitive performance of reduced graphene oxide/silver/nickel-cobalt sulfide ternary nanocomposites. Chem Eng J 308:184–192CrossRefGoogle Scholar
  41. 41.
    Chen X, Chen D, Guo X et al (2017) Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl Mater Interfaces 9(22):18774–18781CrossRefGoogle Scholar
  42. 42.
    Zhang Z, Huang X, Wang H et al (2019) Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. J Alloy Compd 771:274–280CrossRefGoogle Scholar
  43. 43.
    Zhang Z, Huang X, Li H et al (2017) All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. J Energy Chem 26(6):1260–1266CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830CrossRefGoogle Scholar
  45. 45.
    Xia C, Alshareef HN (2015) Self-templating scheme for the synthesis of nanostructured transition-metal chalcogenide electrodes for capacitive energy storage. Chem Mater 27:4661–4668CrossRefGoogle Scholar
  46. 46.
    Xia C, Peng L, Gandi AN, Schwingenschlögl U, Alshareef HN (2015) Is NiCo2S4 really a semiconductor? Chem Mater 27:6482–6485CrossRefGoogle Scholar
  47. 47.
    Xia X, Zhu C, Luo J, Zeng Z, Guan C, Ng CF, Zhang H, Fan HJ (2010) Synthesis of free, standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 10(2014):766–773Google Scholar
  48. 48.
    Yan J, Fan Z, Wei S, Ning G, Tong W, Qiang Z, Zhang R, Zhi L, Fei W (2012) Advanced Asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRefGoogle Scholar
  49. 49.
    Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221CrossRefGoogle Scholar
  50. 50.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguezreinoso F, Rouquerol J, Sing KSW (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 38:25–35Google Scholar
  51. 51.
    Mohamed SG, Attia SY, Hassan HH (2017) Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater 251:26–33CrossRefGoogle Scholar
  52. 52.
    Wang T, Zhao B, Jiang H, Yang HP, Zhang K, Yuen MMF, Fu XZ, Sun R, Wong CP (2015) Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J Mater Chem A 3:23035–23041CrossRefGoogle Scholar
  53. 53.
    Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) ChemInform abstract: direct Growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. Cheminform 79:577–583Google Scholar
  54. 54.
    Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139CrossRefGoogle Scholar
  55. 55.
    Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G, Bao D (2014) Resistive switching properties and physical mechanism of cobalt ferrite thin films. Appl Phys Lett 104:2632Google Scholar
  56. 56.
    Wang JG, Jin D, Zhou R, Shen C, Xie K, Wei B (2016) One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources 306:100–106CrossRefGoogle Scholar
  57. 57.
    Ma L, Hu Y, Chen R, Zhu G, Chen T, Lv H, Wang Y, Liang J, Liu H, Yan C (2016) Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 24:139–147CrossRefGoogle Scholar
  58. 58.
    Chen J, Sheng K, Luo P, Li C, Shi G (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24:4569–4573CrossRefGoogle Scholar
  59. 59.
    Hou L, Hua H, Bao R, Chen Z, Yang C, Zhu S, Pang G, Tong L, Yuan C, Zhang X (2016) Anion-exchange formation of hollow nico2s4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem 81:557–563CrossRefGoogle Scholar
  60. 60.
    Tie J, Han J, Diao G, Liu J, Xie Z, Cheng G, Sun M, Yu L (2018) Controllable synthesis of hierarchical nickel cobalt sulfide with enhanced electrochemical activity. Appl Surf Sci 435:187–194CrossRefGoogle Scholar
  61. 61.
    Li H, Gao Y, Wang C, Yang G (2015) A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv Energy Mater 5:1401767CrossRefGoogle Scholar
  62. 62.
    Zhang C, Cai X, Qian Y, Jiang H, Zhou L, Li B, Lai L, Shen Z, Huang W (2018) Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv Sci 5:1700375CrossRefGoogle Scholar
  63. 63.
    Xue M, Fan F, Ding L, Liu J, Su S, Yin P, Cao M, Zhao W, Hu HM, Wang L (2014) An autophagosome-based therapeutic vaccine for HBV infection: a preclinical evaluation. J Transl Med 12:599–604CrossRefGoogle Scholar
  64. 64.
    Rafai S, Qiao C, Naveed M, Wang Z, Younas W, Khalid S, Cao C (2019) Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem Eng J 362:576–587CrossRefGoogle Scholar
  65. 65.
    Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085CrossRefGoogle Scholar
  66. 66.
    Liu S, Mao C, Niu Y, Yi F, Hou J, Lu S, Jiang J, Xu M, Li CM (2015) Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors. ACS Appl Mater Interfaces 7:25568–25573CrossRefGoogle Scholar
  67. 67.
    Cai F, Sun R, Kang Y, Chen H, Chen M, Li Q (2015) One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. Rsc Adv 5:23073–23079CrossRefGoogle Scholar
  68. 68.
    Liu W, Li X, Zhu M, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186CrossRefGoogle Scholar
  69. 69.
    Li R, Wang S, Huang Z, Lu F, He T (2016) NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J Power Sources 312:156–164CrossRefGoogle Scholar
  70. 70.
    Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008CrossRefGoogle Scholar
  71. 71.
    Tiruneh SN, Kang BK, Kwag SH, Lee YH, Kim MS, Yoon DH (2018) Synergistically Active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem Eur J 24:3263–3270CrossRefGoogle Scholar
  72. 72.
    Song X, Chen HC, Huang C, Qin Y, Li H (2018) Highly active and porous M3S4 (M = Ni, Co) with enriched electroactive edge sites for hybrid supercapacitor with better power and energy delivery performance. Electrochim Acta 283:121–131CrossRefGoogle Scholar
  73. 73.
    Hu Y, Zhang J, Wang D, Sun J, Zhang L, Liu Y, Gao S, Cui Y (2019) Urchin-like NiCo2S4 structures synthesized through a one-step solvothermal process for high-performance supercapacitors. Particuology.  https://doi.org/10.1016/j.partic.2018.07.008 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations