Thermal behaviour of actinolite asbestos

  • Andrea BloiseEmail author


Actinolite is one of the six minerals belonging to the group of asbestos minerals. There is increasing concern regarding the potential health risks from exposure to naturally occurring asbestos and asbestos-containing materials. The correct distinction of the fibrous asbestos minerals is very important not only from a scientific point of view, but also from a legislative perspective. Asbestos actinolite is currently the only asbestos mineral that has not been fully characterized from the thermal point of view. In order to compensate for this gap in scientific literature, this paper discusses the thermal behaviour of actinolite asbestos using thermogravimetric and differential scanning calorimetry. X-ray powder diffraction, Scanning and Transmission Electron Microscopy combined with energy-dispersive spectrometry were used for the characterization of actinolite fibres before and after heating at 1000 and 1200 °C in order to determine their resistance to high-temperature changes and the products of thermal recrystallization. Actinolite asbestos breaks down at approximately 1030 °C. The thermal decomposition process of actinolite asbestos consists of two distinct events followed by recrystallization into new stable crystalline phases which preserved the original fibrous morphology (known as pseudomorphosis). The thermal analysis may prove to be useful for actinolite identification and discrimination, particularly in the case of natural massive samples where asbestos tremolite–actinolite amphiboles are mutually intermixed. Furthermore, profound knowledge of the thermal behaviour of this asbestos mineral may provide us with the relevant data for understanding the crystal–chemical transformations of asbestos through thermal inertization treatment.



A. B. is particularly grateful to Prof. E. Barrese (University of Calabria, Italy) for his constructive reviews. The work has received financial support from the FFABR Fund (by the Italian MIUR) scientific responsible Andrea Bloise.


  1. 1.
    Evans BW, Yang H (1998) Fe–Mg order-disorder in tremolite–actinolite–ferro-actinolite at ambient and high temperature. Am Miner 83:458–475CrossRefGoogle Scholar
  2. 2.
    Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Mineralogical Society of America and Geochemical Society, Chantilly, pp 1–54CrossRefGoogle Scholar
  3. 3.
    Ballirano P, Bloise A, Gualtieri AF, Lezzerini M, Pacella A, Perchiazzi N, Dogan M, Dogan AU (2017) The crystal structure of mineral fibres. In: Gualtieri AF (ed) Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity. European Mineralogical Union, London, pp 17–53CrossRefGoogle Scholar
  4. 4.
    WHO, World Health Organization (1986) Asbestos and other natural mineral fibres environmental health criteria. No. 53 World Health Organization, GenevaGoogle Scholar
  5. 5.
    NIOSH: National Institute for Occupational Safety and Health (2011) Asbestos fibers and other elongate mineral particles: state of the science and roadmap for research. Current Intelligence Bulletin. 62 Cincinnati, USAGoogle Scholar
  6. 6.
    IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. International Agency for Research on Cancer, LyonGoogle Scholar
  7. 7.
    Paglietti F, Malinconico S, Della Staffa BC, Bellagamba S, De Simone P (2016) Classification and management of asbestos-containing waste: European legislation and the Italian experience. Waste Manag 50:130–150CrossRefGoogle Scholar
  8. 8.
    Gualtieri AF (2012) Mineral fiber-based building materials and their health hazards. In: Pacheco-Torgal F, Jalali S, Fucic A (eds) Toxicity of building materials. Woodhead Publishing, Sawston, pp 166–195CrossRefGoogle Scholar
  9. 9.
    Virta RL (2005) Mineral commodity profiles-asbestos. US Geological Survey Circular 1255–KK, Washington, pp 1–56Google Scholar
  10. 10.
    Sullivan JB, Krieger GR (2001) Clinical environmental health and toxic exposures. Lippincott, Williams, Wilkins, Philadelphia, pp 1–1344Google Scholar
  11. 11.
    Yano E, Wang ZM, Wang XR, Wang MZ, Lan YJ (2001) Cancer mortality among workers exposed to amphibole-free chrysotile asbestos. Am J Epidemiol 154:538–543CrossRefGoogle Scholar
  12. 12.
    Gunter ME, Sanchez MS, Williams TJ (2007) Characterization of chrysotile samples for the presence of amphiboles: the Carey Canadian Deposit, Southeastern Quebec, Canada. Can Miner 42(2):263–280CrossRefGoogle Scholar
  13. 13.
    Kakooei H, Marioryad H (2010) Evaluation of exposure to the airborne asbestos in an automobile brake and clutch manufacturing industry in Iran. Regul Toxicol Pharmacol 56(2):143–147CrossRefGoogle Scholar
  14. 14.
    Frank AL, Joshi TK (2014) The global spread of asbestos. Ann Glob Health 80(4):257–262CrossRefGoogle Scholar
  15. 15.
    Geological Survey US, January 2016 Mineral Commodity SummariesGoogle Scholar
  16. 16.
    Suzuki Y, Yuen SR (2002) Asbestos fibers contributing to the induction of human malignant mesothelioma. Ann N Y Acad Sci 982(1):160–176CrossRefGoogle Scholar
  17. 17.
    Fujiwara H, Kamimori T, Morinaga K, Takeda Y, Kohyama N, Miki Y, Inai K, Yamamoto S (2005) An autopsy case of primary pericardial mesothelioma in arc cutter exposed to asbestos through talc pencils. Ind Health 43(2):346–350CrossRefGoogle Scholar
  18. 18.
    Spasiano D, Pirozzi F (2017) Treatments of asbestos containing wastes. J Environ Manag 204:82–91CrossRefGoogle Scholar
  19. 19.
    Bloise A, Catalano M, Gualtieri AF (2018) Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment. Minerals 8:135CrossRefGoogle Scholar
  20. 20.
    Bloise A, Kusiorowski R, Gualtieri AF (2018) The effect of grinding on tremolite asbestos and anthophyllite asbestos. Minerals 8:274CrossRefGoogle Scholar
  21. 21.
    Spasiano D, Luongo V, Petrella A, Alfè M, Pirozzi F, Fratino U, Piccinni AF (2017) Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. J Clean Prod 166:172–180CrossRefGoogle Scholar
  22. 22.
    Viani A, Gualtieri AF (2014) Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cem Concr Res 58:56–66CrossRefGoogle Scholar
  23. 23.
    Kusiorowski R, Zaremba T, Piotrowski J, Podwórny J (2015) Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture. J Mater Sci 50:6757–6767. CrossRefGoogle Scholar
  24. 24.
    Gualtieri AF, Giacobbe C, Sardisco L, Saraceno M, Gualtieri ML, Lusvardi G, Cavenati C, Zanatto I (2011) Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Manag 31(1):91–100CrossRefGoogle Scholar
  25. 25.
    Directive 2003/18/CE of the European Parliament and of the European Council of 27 March 2003Google Scholar
  26. 26.
    Bloise A, Kusiorowski R, Lassinantti Gualtieri M, Gualtieri AF (2017) Thermal behaviour of mineral fibres. In: Gualtieri AF (ed) Mineral fibres: crystal chemistry, chemical–physical properties, biological interaction and toxicity. European Mineralogical Union, London, pp 215–252CrossRefGoogle Scholar
  27. 27.
    Van Oss CJ, Naim JO, Costanzo PM, Giese RF Jr, Wu W, Sorling AF (1999) Impact of different asbestos species and other mineral particles on pulmonary pathogenesis. Clays Clay Miner 47:697–707CrossRefGoogle Scholar
  28. 28.
    Baumann F, Buck BJ, Metcalf RV, McLaurin BT, Merkler DJ, Carbone M (2015) The presence of asbestos in the natural environment is likely related to mesothelioma in young individuals and women from Southern Nevada. J Thorac Oncol 10(5):731–737CrossRefGoogle Scholar
  29. 29.
    Harper M (2008) 10th anniversary critical review: naturally occurring asbestos. J Environ Monit 10(12):1394–1408CrossRefGoogle Scholar
  30. 30.
    Swayze GA, Kokaly RF, Higgins CT, Clinkenbeard JP, Clark RN, Lowers HA, Sutley SJ (2009) Mapping potentially asbestos-bearing rocks using imaging spectroscopy. Geology 37(8):763–766CrossRefGoogle Scholar
  31. 31.
    Bloise A, Belluso E, Critelli T, Catalano M, Apollaro C, Miriello D, Barrese E (2012) Amphibole asbestos and other fibrous minerals in the meta-basalt of the Gimigliano-Mount Reventino Unit (Calabria, south-Italy). Rend Online Soc Geol It 21(2):847–848Google Scholar
  32. 32.
    Buck BJ, Goossens D, Metcalf RV, McLaurin B, Ren M, Freudenberger F (2013) Naturally occurring asbestos: potential for human exposure, Southern Nevada, USA. Soil Sci Soc Am J 77(6):2192–2204CrossRefGoogle Scholar
  33. 33.
    Vignaroli G, Ballirano P, Belardi G, Rossetti F (2014) Asbestos fibre identification versus evaluation of asbestos hazard in ophiolitic rock mélanges, a case study from the Ligurian Alps (Italy). Environ Earth Sci 72(9):3679–3698CrossRefGoogle Scholar
  34. 34.
    Bloise A, Critelli T, Catalano M, Apollaro C, Miriello D, Croce A, Barrese E, Liberi F, Piluso E, Rinaudo C, Belluso E (2014) Asbestos and other fibrous minerals contained in the serpentinites of the Gimigliano-Mount Reventino Unit (Calabria, S-Italy). Environ Earth Sci 71:3773–3786CrossRefGoogle Scholar
  35. 35.
    Punturo R, Bloise A, Critelli T, Catalano M, Fazio E, Apollaro C (2015) Environmental implications related to natural asbestos occurrences in the ophiolites of the Gimigliano-Mount Reventino Unit (Calabria, Southern Italy). Int J Environ Res 9:405–418Google Scholar
  36. 36.
    Bloise A, Catalano M, Critelli T, Apollaro C, Miriello D (2017) Naturally occurring asbestos: potential for human exposure, San Severino Lucano (Basilicata, Southern Italy). Environ Earth Sci 76:648. CrossRefGoogle Scholar
  37. 37.
    Perkins RA, Hargesheimer J, Fourie W (2007) Asbestos release from wholebuilding demolition of buildings with asbestos-containing material. J Occup Environ Hyg 4:889–894CrossRefGoogle Scholar
  38. 38.
    Kashimura K, Yamaguchi T, Sato M, Yoneda S, Kishima T, Horikoshi S, Yoshikawa N, Mitani T, Shinohara N (2015) Rapid transformation of asbestos into harmless waste by a microwave rotary furnace: application of microwave heating to rubble processing of the 2011 Tohoku earthquake. J Hazard Toxic Radioact Waste 19(3):04014041–04014048CrossRefGoogle Scholar
  39. 39.
    Bloise A, Punturo R, Catalano M, Miriello D, Cirrincione R (2016) Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Ital J Geosci 135(2):268–279CrossRefGoogle Scholar
  40. 40.
    Belluso E, Cavallo A, Halterman D (2017) Crystal habit of mineral fibres. In: Gualtieri AF (ed) Mineral fibres: crystal chemistry, chemical–physical properties, biological interaction and toxicity. European Mineralogical Union, London, pp 65–109CrossRefGoogle Scholar
  41. 41.
    Viti C (2010) Serpentine minerals discrimination by thermal analysis. Am Miner 95:631–638CrossRefGoogle Scholar
  42. 42.
    Vermaas FHS (1952) The amphibole asbestos of South Africa. S Afr J Geol 55(1):199–229Google Scholar
  43. 43.
    Ishida K, Hawthorne FC, Ando Y (2002) Fine structure of infrared OH-stretching bands in natural and heat-treated amphiboles of the tremolite-ferro-actinolite series. Am Min 87:891–898CrossRefGoogle Scholar
  44. 44.
    Catalano M, Belluso E, Miriello D, Barrese E, Bloise A (2014) Synthesis of Zn-doped talc in hydrothermal atmosphere. Cryst Res Technol 49:283–292CrossRefGoogle Scholar
  45. 45.
    Jones AA (1981) Charges on the surfaces of two chlorites. Clay Miner 16:347–359CrossRefGoogle Scholar
  46. 46.
    Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch VW, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NN, Ungaretti L, Withtaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Am Miner 82:1019–1037Google Scholar
  47. 47.
    Patterson JH (1965) The thermal disintegration of crocidolite in air and in vacuum. Miner Mag 35(269):31–37Google Scholar
  48. 48.
    Giacobbe C, Gualtieri AF, Quartieri S, Rinaudo C, Allegrina M, Andreozzi GB (2010) Spectroscopic study of the product of thermal transformation on chrysotile-asbestos containing materials. Eur J Miner 22:535–546CrossRefGoogle Scholar
  49. 49.
    Hodgson AA (1965) The thermal decomposition of miscellaneous crocidolites. Miner Mag 35:291–305Google Scholar
  50. 50.
    Miriello D, Bloise A, De Francesco AM, Crisci GM, Chiaravalloti F, Barca D, La Russa MF, Marasco E (2010) Colour and composition of nodules from the Calabrian clay deposits: a possible raw material for pigments production in Magna Graecia. Period Miner 79:59–69Google Scholar
  51. 51.
    Bloise A, Catalano M, Barrese E, Gualtieri AF, Gandolfi NB, Capella S, Belluso E (2016) TG/DSC study of the thermal behaviour of hazardous mineral fibres. J Therm Anal Calorim 123:2225–2239CrossRefGoogle Scholar
  52. 52.
    Brindley GW, Youell RF (1953) Ferrous chamosite and ferric chamosite. Miner Mag 30:57–70Google Scholar
  53. 53.
    Vedder W, Wilkins RWT (1969) Dehydroxylation and rehydroxylation, oxidation and reduction of micas. Am Miner 54(3–4):482–509Google Scholar
  54. 54.
    Gualtieri AF, Levy D, Belluso E, Dapiaggi M (2004) Kinetics of the decomposition of crocidolite asbestos: a preliminary real-time X-ray powder diffraction study. Miner Sci Forum 443–444:291–294CrossRefGoogle Scholar
  55. 55.
    Kusiorowski R, Zaremba T, Piotrowski J, Adamek J (2012) Thermal decomposition of different types of asbestos. J Therm Anal Calorim 109:693–704CrossRefGoogle Scholar
  56. 56.
    Pollastri S, Gigli L, Ferretti P, Andreozzi GB, Bursi Gandolfi N, Pollok K, Gualtieri AF (2017) The crystal structure of mineral fibres 3 actinolite asbestos. Period Miner 86:89–98Google Scholar
  57. 57.
    Oberti R, Hawthorne FC, Cannillo E, Cámara F (2007) Long-range order in amphiboles. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Mineralogical Society of America and Geochemical Society, Chantilly, pp 125–172CrossRefGoogle Scholar
  58. 58.
    Hodgson AA, Freeman AG, Taylor H (1965) The thermal decomposition of crocidolite from Koegas, South Africa. Miner Mag 35:5–30Google Scholar
  59. 59.
    Freeman AG (1966) The dehydroxylation behaviour of amphiboles. Miner Mag 35:953–957Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly

Personalised recommendations