Advertisement

Effects of phase composition and grain size on the piezoelectric properties of HfO2-doped barium titanate ceramics

  • Hong-Mei Yin
  • Wen-Jun Xu
  • Heng-Wei Zhou
  • Xing-Yu Zhao
  • Yi-Neng HuangEmail author
Ceramics
  • 16 Downloads

Abstract

The effect of grain size and phase compositions on piezoelectric coefficient of BaTi0.98Hf0.02O3 ceramics prepared at a series of sintering temperatures (1320, 1350, 1370, and 1400 °C) was studied. The results showed that the grain size of the ceramics is 0.9, 21.3, 21.6, and 37.2 μm, respectively, and the corresponding phase compositions are the tetragonal–orthogonal, tetragonal–orthogonal–rhombohedral, tetragonal–orthogonal, and tetragonal–orthogonal–rhombohedral, while the piezoelectric coefficient is 475, 352, 258, and 327 pC/N, i.e., it decreases first and then increases as the grain size goes up. The phase compositions and grain size of the ceramics are interrelated, and they co-affect the piezoelectric coefficient.

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant No. 11664042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

References

  1. 1.
    Jaffe H, Berlincourt DA (1965) Piezoelectric transducer materials. Proc IEEE 53(10):1372–1386.  https://doi.org/10.1109/PROC.1965.4253 Google Scholar
  2. 2.
    Cross E (2004) Materials science: lead-free at last. Nature 432(7013):24–25.  https://doi.org/10.1038/nature03142 Google Scholar
  3. 3.
    Zhang SJ, Li F, Yu FP, Jiang XN, Lee HY, Luo J, Shrout TR (2018) Recent developments in piezoelectric crystals. J Korean Ceram Soc 55(5):419–439.  https://doi.org/10.4191/kcers.2018.55.5.12 Google Scholar
  4. 4.
    Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681.  https://doi.org/10.1016/j.jeurceramsoc.2014.12.013 Google Scholar
  5. 5.
    Wu JG, Xiao DQ, Zhu JG (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595.  https://doi.org/10.1021/cr5006809 Google Scholar
  6. 6.
    Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126.  https://doi.org/10.1007/s10832-007-9047-0 Google Scholar
  7. 7.
    Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng X, Zheng T, Zhang BY, Lou XJ, Wang XJ (2014) Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910.  https://doi.org/10.1021/ja500076h Google Scholar
  8. 8.
    Trolier-McKinstry S, Zhang SJ, Bell AJ, Tan XL (2018) High-Performance piezoelectric crystals, ceramics, and films. Annu Rev Mater Res 48:191–217.  https://doi.org/10.1146/annurev-matsci-070616-124023 Google Scholar
  9. 9.
    Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Rödel J (2017) BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 4(4):41305.  https://doi.org/10.1063/1.4990046 Google Scholar
  10. 10.
    Zhao CL, Wu HJ, Li F, Cai YQ, Zhang Y, Song DS, Wu JG, Lyu X, Yin J, Xiao DQ, Zhu JG, Pennycook SJ (2018) Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility. J Am Chem Soc 140(45):15252–15260.  https://doi.org/10.1021/jacs.8b07844 Google Scholar
  11. 11.
    Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602.  https://doi.org/10.1103/PhysRevLett.03.257602 Google Scholar
  12. 12.
    Chandrakala E, Paul Praveen J, Kumar A, James AR, Das D, Damjanovic D (2016) Strain-induced structural phase transition and its effect on piezoelectric properties of (BZT-BCT)-(CeO2) ceramics. J Am Ceram Soc 99(11):3659–3669.  https://doi.org/10.1111/jace.14409 Google Scholar
  13. 13.
    Zhou PF, Zhang BP, Zhao L, Zhao XK, Zhu LF, Cheng LQ, Li JF (2013) High piezoelectricity due to multiphase coexistence in low-temperature sintered (Ba, Ca)(Ti, Sn)O3-CuOx ceramics. Appl Phys Lett 103(17):172904.  https://doi.org/10.1063/1.4826933 Google Scholar
  14. 14.
    Long PQ, Liu XT, Long X, Yi ZG (2017) Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 ceramics and their multilayer piezoelectric actuators. J Alloys Compd 706:234–243.  https://doi.org/10.1016/j.jallcom.2017.02.237 Google Scholar
  15. 15.
    Jiang XP, Li L, Chen C, Tang J, Zheng KP, Li XH (2014) Structure and properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1−xSnx)O3 lead-free ceramics with high piezoelectric constant. J Inorg Mater 29(1):33–37.  https://doi.org/10.3724/sp.J.1077.2014.13213 Google Scholar
  16. 16.
    Zhu LF, Zhang BP, Zhao XK, Zhao L, Yao FZ, Han X, Zhou PF, Li JF (2013) Phase transition and high piezoelectricity in (Ba, Ca)(Ti1−xSnx)O3 lead-free ceramics. Appl Phys Lett 103(7):72905.  https://doi.org/10.1063/1.4818732 Google Scholar
  17. 17.
    Wu JG, Xiao DQ, Wu WJ, Chen Q, Zhu JG, Yang ZC, Wang J (2012) Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics. J Eur Ceram Soc 32(4):891–898.  https://doi.org/10.1016/j.jeurceramsoc.2011.11.003 Google Scholar
  18. 18.
    Hoshina T, Hatta S, Takeda H, Tsurumi T (2018) Grain size effect on piezoelectric properties of BaTiO3 ceramics. Jpn J Appl Phys 57(9):0902BB.  https://doi.org/10.7567/jjap.57.0902bb Google Scholar
  19. 19.
    Chen ZH, Li ZW, Qiu JH, Zhao TX, Ding JN, Jia XG, Zhu WQ, Xu JJ (2018) Y2O3 doped Ba09Ca0.1Ti0.9Sn0.1O3 ceramics with improved piezoelectric properties. J Eur Ceram Soc 38(4):1349–1355.  https://doi.org/10.1016/j.jeurceramsoc.2017 Google Scholar
  20. 20.
    Chen ZH, Li ZW, Ma MG, Qiu JH, Zhao TX, Ding JN, Jia XG, Zhu KQ (2018) Enhanced piezoelectric properties in (Ba1−xCax)(Ti0.90Sn0.10)O3-0.08Dy2O3 lead-free ceramics. Mater Res Bull 105:330–333.  https://doi.org/10.1016/j.materresbull.2018.05.004 Google Scholar
  21. 21.
    Wu JG, Xiao DQ, Wu WJ, Chen Q, Zhu JG, Yang ZC, Wang J (2011) Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr Mater 65(9):771–774.  https://doi.org/10.1016/j.scriptamat.2011.07.028 Google Scholar
  22. 22.
    Wang P, Li YX, Lu YQ (2011) Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J Eur Ceram Soc 31(11):2005–2012.  https://doi.org/10.1016/j.jeurceramsoc.2011.04.023 Google Scholar
  23. 23.
    Chandrakala E, Paul Praveen J, Hazra BK, Das D (2016) Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol-gel derived BZT-BCT ceramics. Ceram Int 42(4):4964–4977.  https://doi.org/10.1016/j.ceramint.2015.12.009 Google Scholar
  24. 24.
    Zhao ZH, Li XL, Ji HM, Dai YJ, Li T (2015) Microstructure and electrical properties in Zn-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoelectric ceramics. J Alloys Compd 637:291–296.  https://doi.org/10.1016/j.jallcom.2015.02.093 Google Scholar
  25. 25.
    Payne WH, Tennery VJ (1965) Dielectric and structural investigations of system BaTiO3–BaHfO3. J Am Ceram Soc 48(8):413–417.  https://doi.org/10.1111/j.1151-2916.1965.tb14779.x Google Scholar
  26. 26.
    Dobal PS, Dixit A, Katiyar RS, Yu Z, Guo R, Bhalla AS (2001) Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J Appl Phys 89(12):8085–8091.  https://doi.org/10.1063/1.1369399 Google Scholar
  27. 27.
    Verbitskaia TN, Zhdanov GS, Venevtsev IN, Soloviev SP (1958) Electrical and X-ray diffraction studies of the BaTiO3–BaZrO3 system. Sov Phys Crystallogr 3:182–192Google Scholar
  28. 28.
    Kalyani AK, Brajesh K, Senyshyn A, Ranjan R (2014) Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3. Appl Phys Lett 104(25):252906.  https://doi.org/10.1063/1.4885516 Google Scholar
  29. 29.
    Avrahami Y, Tuller HL (2004) Improved electromechanical response in rhombohedral BaTiO3. J Electroceram 13(1–3):463–469.  https://doi.org/10.1007/s10832-004-5143-6 Google Scholar
  30. 30.
    Zhou C, Liu WF, Xue DZ, Ren XB, Bao HX, Gao JH, Zhang LX (2012) Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material-Ba(Ti0.8Hf0.2)O3–(Ba0.7Ca0.3)TiO3. Appl Phys Lett 100(22):222910.  https://doi.org/10.1063/1.4724216 Google Scholar
  31. 31.
    Wang DL, Jiang ZH, Yang B, Zhang ST, Zhang MF, Guo FF, Cao WW (2014) Phase transition behavior and high piezoelectric properties in lead-free BaTiO3–CaTiO3–BaHfO3 ceramics. J Mater Sci 49(1):62–69.  https://doi.org/10.1007/s10853-013-7650-9 Google Scholar
  32. 32.
    Wang DL, Jiang Z, Yang B, Zhang ST, Zhang MF, Guo FF, Cao WW (2014) Phase diagram and enhanced piezoelectric response of lead-free BaTiO3–CaTiO3–BaHfO3 system. J Am Ceram Soc 97(10):3244–3251.  https://doi.org/10.1111/jace.13137 Google Scholar
  33. 33.
    Zhao CL, Wu WJ, Wang H, Wu JA (2016) Site engineering and polarization characteristics in (Ba1−yCay)(Ti1−xHfx)O3 lead-free ceramics. J Appl Phys 119(2):24108.  https://doi.org/10.1063/1.4939762 Google Scholar
  34. 34.
    Zhao CL, Feng YM, Wu HP, Wu JG (2016) Phase boundary design and high piezoelectric activity in (1 − x)(Ba0.93Ca0.07)TiO3–xBa(Sn1−yHfy)O3 lead-free ceramics. J Alloys Compd 666:372–379.  https://doi.org/10.1016/j.jallcom.2016.01.105 Google Scholar
  35. 35.
    Zhao CL, Wang H, Xiong J, Wu JG (2016) Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1−xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics. Dalton Trans 45(15):6466–6480.  https://doi.org/10.1039/c5dt04891e Google Scholar
  36. 36.
    Di Loreto A, Machado R, Frattini A, Stachiotti MG (2017) Improvement in the sintering process of Ba0.85Ca0.15Zr0.1T i0.9O3 ceramics by the replacement of Zr by Hf. J Mater Sci: Mater Electron 28(1):588–594.  https://doi.org/10.1007/s10854-016-5562-6 Google Scholar
  37. 37.
    Yang Y, Zhou Y, Ren J, Zheng QJ, Lam KH, Lin DM (2018) Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3–CaHfO3 lead-free ceramics. J Eur Ceram Soc 38(2):557–566.  https://doi.org/10.1016/j.jeurceramsoc.2017.09.023 Google Scholar
  38. 38.
    Tian HY, Wang Y, Miao J, Chan HLW, Choy CL (2007) Preparation and characterization of hafnium doped barium titanate ceramics. J Alloys Compd 431(1–2):197–202.  https://doi.org/10.1016/j.jallcom.2006.05.037 Google Scholar
  39. 39.
    Wang JC, Zheng P, Yin RQ, Zheng LM, Du J, Zheng L, Deng JX, Song KX, Qin HB (2015) Different piezoelectric grain size effects in BaTiO3 ceramics. Ceram Int 41(10):14165–14171.  https://doi.org/10.1016/j.ceramint.2015.07.039 Google Scholar
  40. 40.
    Zhi Y, Chen A, Guo RY, Bhalla AS (2002) Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics. J Appl Phys 92(3):1489–1493.  https://doi.org/10.1063/1.1487435 Google Scholar
  41. 41.
    Li W, Xu ZJ, Chu RQ, Fu P, Zang GZ (2010) Dielectric and piezoelectric properties of Ba(ZrxTi1−x)O3 lead-free ceramics. Braz J Phys 40(3):353–356.  https://doi.org/10.1590/S0103-97332010000300018 Google Scholar
  42. 42.
    Yao YG, Zhou C, Lv DC, Wang D, Wu HJ, Yang YD (2012) Large piezoelectricity and dielectric permittivity in BaTiO3–xBaSnO3 system: the role of phase coexisting. EPL (Europhys Lett) 98(2):27008.  https://doi.org/10.1209/0295-5075/98/27008 Google Scholar
  43. 43.
    Karaki T, Yan K, Adachi M (2007) Barium titanate piezoelectric ceramics manufactured by two-step sintering. Jpn J Appl Phys 46(10B):7035–7038.  https://doi.org/10.1143/jjap.46.7035 Google Scholar
  44. 44.
    Tsurumi T, Li J, Hoshina T, Kakemoto H, Nakada M, Akedo J (2007) Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics. Appl Phys Lett 91(18):182905.  https://doi.org/10.1063/1.2804570 Google Scholar
  45. 45.
    Hoshina T, Takizawa K, Li J, Kasama T, Kakemoto H, Tsurumi T (2008) Domain size effect on dielectric properties of barium titanate ceramics. Jpn J Appl Phys 47(9):7607–7611.  https://doi.org/10.1143/jjap.47.7607 Google Scholar
  46. 46.
    Jaffe B, Cook WR, Jafie H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  47. 47.
    Devonshire AF (1949) XCVI. Theory of barium titanate-part 1. Philos Mag 40(309):1040–1063.  https://doi.org/10.1080/14786444908561372 Google Scholar
  48. 48.
    Tian HY, Wang Y, Miao J, Chan HLW, Choy CL (2007) Preparation and characterization of hafnium doped barium titanate ceramics. J Alloys Compd 431(1–2):197–202.  https://doi.org/10.1016/j.jallcom.2006.05.037 Google Scholar
  49. 49.
    Anwar S, Sagdeo PR, Lalla NP (2006) Crossover from classical to relaxor ferroelectrics in BaTi1−xHfxO3 ceramics. J Phys: Condens Matter 18(13):3455–3468.  https://doi.org/10.1088/0953-8984/18/13/013 Google Scholar
  50. 50.
    Zhou C, Ren XB, Tan XL, Guo HZ (2014) Unique single-domain state in a polycrystalline ferroelectric ceramic. Phys Rev B 89(10):100104.  https://doi.org/10.1103/PhysRevB.89.100104 Google Scholar
  51. 51.
    Mitoseriu L, Tura V, Papusoi C, Osaka T, Okuyama M (1999) A comparative study of the grain size effects on ferro-para phase transition in barium titanate ceramics. Ferroelectrics 223(1):99–106.  https://doi.org/10.1080/00150199908260558 Google Scholar
  52. 52.
    Kuwabara M, Matsuda H, Kurata N, Matsuyama E (1997) Shift of the curie point of barium titanate ceramics with sintering temperature. J Am Ceram Soc 80(10):2590–2596.  https://doi.org/10.1111/j.1151-2916.1997.tb03161.x Google Scholar
  53. 53.
    Li BR, Wang XH, Li LT, Zhou H, Liu XT, Han XQ, Zhang YC, Qi XW, Deng XY (2004) Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering. Mater Chem Phys 83(1):23–28.  https://doi.org/10.1016/j.matchemphys.2003.08.009 Google Scholar
  54. 54.
    Arlt G, Hennings D, de With G (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58(4):1619–1625.  https://doi.org/10.1063/1.336051 Google Scholar
  55. 55.
    Mitoseriu L, Tura V, Papusoi C, Osaka T, Okuyama M (1999) A comparative study of the grain size effects on ferro-para phase transition in barium titanate ceramics. Ferroelectrics 223(1):99–106.  https://doi.org/10.1080/00150199908260558 Google Scholar
  56. 56.
    Zhu LF, Zhang BP, Zhao L, Li S, Zhou Y, Shi XC, Wang N (2016) Large piezoelectric effect of (Ba,Ca)TiO3–xBa(Sn,Ti)O3 lead-free ceramics. J Eur Ceram Soc 36(4):1017–1024.  https://doi.org/10.1016/j.jeurceramsoc.2015.11.039 Google Scholar
  57. 57.
    Zhao L, Zhang BP, Wang N, Chen JY (2017) High piezoelectricity in CuO-modified Ba(Ti0.90Sn0.10)O3 lead-free ceramics with modulated phase structure. J Eur Ceram Soc 37(4):1411–1419.  https://doi.org/10.1016/j.jeurceramsoc.2016.11.028 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Laboratory of Solid State Microstructures, School of PhysicsNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and TechnologyYili Normal UniversityYiningPeople’s Republic of China

Personalised recommendations