Advertisement

Enhancing the recrystallization ability of bio-based polylactide stereocomplex by in situ construction of multi-block branched conformation

  • Yue Chang
  • Zhize ChenEmail author
  • Gangwei Pan
  • Yiqi YangEmail author
Polymers & biopolymers

Abstract

To enhance the formation and regeneration ability and the toughness of stereocomplex polylactide (sc-PLA), a high molecular weight stereocomplex branched multi-block polylactide (sb-PCLDA) was synthesized from d-lactide, l-lactide and poly(ε-caprolactone) diol (PCL). High molecular weight sc-PLA has attracted much attention in bioengineering because of its good mechanical and thermal properties, but its brittleness and the poor regeneration ability of the sc crystallites hindered the practical processability, that is, the mixed homochiral and sc crystallites would form in the sc-PLA products after the complete melting and recrystallization processing. The high molecular weight sc-PLA which is easy to form complete stereocomplex and suitable for melt processing needs further research. Herein, sb-PCLDA having PCL, PLLA and PDLA segments on one molecular chain has been synthesized by polymerization of l-lactied and d-lactide with PCL and in situ hydrolysis condensation with silane coupling agents. Differential scanning calorimetry and wide angle X-ray diffraction indicated that sb-PCLDA formed complete sc with high crystallinity and exhibited good sc reformulation ability after multiple melting, suggesting much improved processability. Meanwhile, the sb-PCLDA maintained good thermal properties and hydrolysis resistance. The polymer exhibited significant tensile toughness with an elongation at break of 185%. This facile method could simultaneously improve the mechanical property and recrystallization ability of sc-PLA.

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51503029). It was also supported by National Institute of Food and Agriculture of U.S. Department of Agriculture (Multi-State Project S1054 (NEB 37-037) and USDA Hatch Act), the Agricultural Research Division at the University of NebraskaLincoln. Hongbin Chai and Xiang Li are acknowledged for their assistance in the DSC and FT-IR testing.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest exist.

Supplementary material

10853_2019_3724_MOESM1_ESM.docx (170 kb)
Supplementary material 1 (DOCX 169 kb)

References

  1. 1.
    Inkinen S, Hakkarainen M, Albertsson A-C, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532CrossRefGoogle Scholar
  2. 2.
    Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers–polylactide: a critique. Eur Polym J 43(10):4053–4074CrossRefGoogle Scholar
  3. 3.
    Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRefGoogle Scholar
  4. 4.
    Fan X, Cao M, Zhang X, Li Z (2017) Synthesis of star-like hybrid POSS-(PDMAEMA-b-PDLA)(8) copolymer and its stereocomplex properties with PLLA. Mater Sci Eng C Mater 76:211–216CrossRefGoogle Scholar
  5. 5.
    Li C, Luo S, Wang J, Wu H, Guo S, Zhang X (2017) Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromolecules 18(4):1440–1448CrossRefGoogle Scholar
  6. 6.
    Harris AM, Lee EC (2013) Durability of polylactide-based polymer blends for injection-molded applications. J Appl Polym Sci 128(3):2136–2144.  https://doi.org/10.1002/app.38407 Google Scholar
  7. 7.
    Tsuji H (2016) Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliv Rev 107:97–135CrossRefGoogle Scholar
  8. 8.
    Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4(10):5370–5391CrossRefGoogle Scholar
  9. 9.
    Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72CrossRefGoogle Scholar
  10. 10.
    Tsuji H, Yamamoto J (2011) Hydrolytic degradation and thermal properties of linear 1-arm and 2-arm poly(DL-lactic acid)s: effects of coinitiator-induced molecular structural difference. Polym Degrad Stabil 96(12):2229–2236CrossRefGoogle Scholar
  11. 11.
    Bai H, Deng S, Bai D, Zhang Q, Fu Q (2017) Recent advances in processing of stereocomplex-type polylactide. Macromol Rapid Commun 38(23):1–6CrossRefGoogle Scholar
  12. 12.
    Zhou W, Wang K, Wang S, Yuan S, Chen W, Konishi T, Miyoshi T (2018) Stoichiometry and packing structure of poly(lactic acid) stereocomplex as revealed by solid-state NMR and 13C isotope labeling. ACS Macro Lett 7(6):667–671CrossRefGoogle Scholar
  13. 13.
    Li Y, Li Q, Yang G, Ming R, Yu M, Zhang H, Shao H (2018) Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(l-lactic acid) and poly(d-lactic acid) with various molecular weights. Adv Polym Technol 37(6):1674–1681CrossRefGoogle Scholar
  14. 14.
    Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44(10):2891–2896CrossRefGoogle Scholar
  15. 15.
    Pan P, Han L, Bao J, Xie Q, Shan G, Bao Y (2015) Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(l-lactic acid)/poly(d-lactic acid) racemic blends: molecular weight effects. J Phys Chem B 119(21):6462–6470CrossRefGoogle Scholar
  16. 16.
    Bao R-Y, Yang W, Wei X-F, Xie B-H, Yang M-B (2014) Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). Acs Sustain Chem Eng 2(10):2301–2309CrossRefGoogle Scholar
  17. 17.
    Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acid)s. 9. Sterecomoplexation from the melt. Macromolecules 26(25):6918–6926CrossRefGoogle Scholar
  18. 18.
    Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N (2009) Effect of polylactide stereocomplex on the crystallization behavior of poly(l-lactic acid). Macromolecules 42(13):4739–4745CrossRefGoogle Scholar
  19. 19.
    Hortos M, Vinas M, Espino S, Bou JJ (2019) Influence of temperature on high molecular weight poly(lactic acid) stereocomplex formation. Express Polym Lett 13(2):123–134CrossRefGoogle Scholar
  20. 20.
    Xie Y, Lan X-R, Bao R-Y, Lei Y, Cao Z-Q, Yang M-B, Yang W, Wang Y-B (2018) High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Mater Sci Eng C Mater 90:602–609CrossRefGoogle Scholar
  21. 21.
    Tsuji H, Yamamoto S (2011) Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296(7):583–589CrossRefGoogle Scholar
  22. 22.
    Han L, Pan P, Shan G, Bao Y (2015) Stereocomplex crystallization of high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) racemic blends promoted by a selective nucleator. Polymer 63:144–153CrossRefGoogle Scholar
  23. 23.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2007) Investigation of phase transitional behavior of poly(l-lactide)/poly(d-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40(4):1049–1054CrossRefGoogle Scholar
  24. 24.
    Pan G, Xu H, Mu B, Ma B, Yang J, Yang Y (2017) Complete stereo-complexation of enantiomeric polylactides for scalable continuous production. Chem Eng J 328:759–767CrossRefGoogle Scholar
  25. 25.
    Li Z, Yuan D, Jin G, Tan BH, He C (2016) Facile layer-by-layer self-assembly toward enantiomeric poly(lactide) stereocomplex coated magnetite nanocarrier for highly tunable drug deliveries. ACS Appl Mater Interfaces 8(3):1842–1853CrossRefGoogle Scholar
  26. 26.
    Li W, Fan X, Wang X, Shang X, Wang Q, Lin J, Hu Z, Li Z (2018) Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. Mater Sci Eng C Mater 91:688–695CrossRefGoogle Scholar
  27. 27.
    Bai H, Liu H, Bai D, Zhang Q, Wang K, Deng H, Chen F, Fu Q (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5(20):5985–5993CrossRefGoogle Scholar
  28. 28.
    Masutani K, Kawabata S, Aoki T, Kimura Y (2010) Efficient formation of stereocomplexes of poly(l-lactide) and poly(d-lactide) by terminal Diels–Alder coupling. Polym Int 59(11):1526–1530CrossRefGoogle Scholar
  29. 29.
    Cui L, Wang Y, Zhang R, Liu Y (2018) Design high heat-resistant stereocomplex poly(lactide acid) by cross-linking and plasticizing. Adv Polym Tech 37(7):2429–2435CrossRefGoogle Scholar
  30. 30.
    Brzezinski M, Boguslawska M, Ilcikova M, Mosnacek J, Biela T (2012) Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes. Macromolecules 45(21):8714–8721CrossRefGoogle Scholar
  31. 31.
    Bao J, Chang R, Shan G, Bao Y, Pan P (2016) Promoted stereocomplex crystallization in supramolecular stereoblock copolymers of enantiomeric poly(lactic acid)s. Cryst Growth Des 16(3):1502–1511CrossRefGoogle Scholar
  32. 32.
    Brzezinski M, Biela T (2015) Supramolecular polylactides by the cooperative interaction of the end groups and stereocomplexation. Macromolecules 48(9):2994–3004CrossRefGoogle Scholar
  33. 33.
    Masutani K, Kimura Y (2017) Macromolecular design of specialty polylactides by means of controlled copolymerization and stereocomplexation. Polym Int 66(2):260–276CrossRefGoogle Scholar
  34. 34.
    Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer–polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRefGoogle Scholar
  35. 35.
    Chen Z, Chang Y, Jiang Z (2018) Facile fabrication of polylactic acid stereocomplex microspheres. Mater Lett 211:146–148CrossRefGoogle Scholar
  36. 36.
    Han L, Yu C, Zhou J, Shan G, Bao Y, Yun X, Dong T, Pan P (2016) Enantiomeric blends of high-molecular-weight poly(lactic acid)/poly(ethylene glycol) triblock copolymers: enhanced stereocomplexation and thermomechanical properties. Polymer 103:376–386CrossRefGoogle Scholar
  37. 37.
    Mao H, Pan P, Shan G, Bao Y (2015) In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers. J Phys Chem B 119(21):6471–6480CrossRefGoogle Scholar
  38. 38.
    Jing Z, Shi X, Zhang G (2017) Competitive stereocomplexation and homocrystallization behaviors in the poly(lactide) blends of plla and PDLA–PEG–PDLA with controlled block length. Polymers 9(3):107CrossRefGoogle Scholar
  39. 39.
    Song Y, Wang D, Jiang N, Gan Z (2015) Role of PEG segment in stereocomplex crystallization for PLLA/PDLA-b-PEG-b-PDLA blends. Acs Sustain Chem Eng 3(7):1492–1500CrossRefGoogle Scholar
  40. 40.
    Chang Y, Chen Z, Yang Y (2018) One-pot versatile synthesis of branched-multiblock copolymers based on polylactide and poly(epsilon-caprolactone). Ind Eng Chem Res 57(1):242–249CrossRefGoogle Scholar
  41. 41.
    Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase-structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state C-13 NMR-spectroscopy. Macromolecules 25(16):4114–4118CrossRefGoogle Scholar
  42. 42.
    Rahaman MH, Tsuji H (2013) Hydrolytic degradation behavior of stereo multiblock and diblock poly(lactic acid)s: effects of block lengths. Polym Degrad Stab 98(3):709–719CrossRefGoogle Scholar
  43. 43.
    Yang P, Jing S, Liang-jing L, Xia T (2010) Effects of two different polarity of solvents on 1H NMR spectroscopy of strychnine. Chin Med J Res Pract 24(01):30–32Google Scholar
  44. 44.
    Chang Y, Chen Z, Yang Y (2018) Benign fabrication of fully stereocomplex polylactide with high molecular weights via a thermally induced technique. ACS Omega 3(7):7979–7984CrossRefGoogle Scholar
  45. 45.
    Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39(11):3710–3713CrossRefGoogle Scholar
  46. 46.
    Reid BO, Vadlamudi M, Mamun A, Janani H, Gao H, Hu W, Alamo RG (2013) Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 46(16):6485–6497CrossRefGoogle Scholar
  47. 47.
    Li Z, Muiruri JK, Thitsartarn W, Zhang X, Tan BH, He C (2018) Biodegradable silica rubber core-shell nanoparticles and their stereocomplex for efficient PLA toughening. Compos Sci Technol 159:11–17CrossRefGoogle Scholar
  48. 48.
    Chee J, Yeo C, Muiruri JK, Tan BH, Thitsartarn W, Kong J, Zhang X, Li Z, He C (2018) Biodegradable PHB-rubber copolymer toughened PLA green composites with ultrahigh extensibility. Acs Sustain Chem Eng 6(11):15517–15527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.Innovation Center for Textile Science and TechnologyDonghua UniversityShanghaiPeople’s Republic of China
  3. 3.School of Textile and ClothingNantong UniversityNantongPeople’s Republic of China
  4. 4.Department of Textiles, Merchandising and Fashion DesignUniversity of Nebraska-LincolnLincolnUSA
  5. 5.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  6. 6.Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations