Advertisement

Journal of Materials Science

, Volume 55, Issue 5, pp 1915–1932 | Cite as

Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles

  • Radu Claudiu Fierascu
  • Irina FierascuEmail author
  • Eduard Marius Lungulescu
  • Nicoleta Nicula
  • Raluca Somoghi
  • Lia Mara Diţu
  • Camelia Ungureanu
  • Anca Nicoleta Sutan
  • Oana Alexandra Drăghiceanu
  • Alina Paunescu
  • Liliana Cristina Soare
Developments in MS&E

Abstract

Metallic nanoparticles represent an important area of research, as their unique properties can be tuned for the desired application. Several “green” methods were proposed for obtaining metallic nanoparticles, including phytosynthesis (using natural extracts) and radiation-assisted synthesis. The present work studies the differences in terms of biological properties (antimicrobial properties, cytotoxicity and phytotoxicity) of silver nanoparticles obtained using those two very different approaches. The obtained nanoparticles were analytically characterized using transmission electron microscopy, X-ray diffraction and UV–Vis spectrometry, for the evaluation of their morphological properties, which can be linked to their biological properties. The results showed that the radiation-assisted path led to smaller dimension nanoparticles (7–10 nm), while the phytosynthesis led to nanoparticles with 10–12 nm in diameter (as determined by XRD), depending on the used materials. The phytosynthesized nanoparticles seemed to be more effective antimicrobial agents (effect studied against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231), while those obtained by the radiological path had a stronger mitoinhibitory effect. The growth of the root and of the stem was less affected by the samples containing radiological synthesized nanoparticles. The differences in terms of biological activity observed when modifying the agents used for the reduction of the metallic salt are also discussed.

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI—UEFISCDI, Project BIOHORTINOV, Project Code PN-III-P1-1.2-PCCDI-2017-0332, Project Number 6 PCCDI/2018, within PNCDI III, contract 31PFE/2018 (between INCDCP-ICECHIM and Romanian Ministry of Research and Innovation), ICPE-CA Core Program 2019–2022 PN19310101-46 N/2019 and contract 30PFE/2018 (between National R&D Institute for Electrical Engineering ICPE-CA and Romanian Ministry of Research and Innovation—MCI).

Supplementary material

10853_2019_3713_MOESM1_ESM.pdf (415 kb)
Supplementary material 1 (PDF 414 kb)

References

  1. 1.
    Ocsoy I, Tasdemir D, Mazicioglu S, Celik C, Katı A, Ulgen F (2018) Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 212:45–50.  https://doi.org/10.1016/j.matlet.2017.10.068 CrossRefGoogle Scholar
  2. 2.
    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefGoogle Scholar
  3. 3.
    Arunachalam KD, Annamalai SK, Arunachalam AM, Kennedy S (2013) Green synthesis of crystalline silver nanoparticles using Indigofera aspalathoides-medicinal plant extract for wound healing applications. Asian J Chem 25:S311–S314Google Scholar
  4. 4.
    Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  5. 5.
    Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefGoogle Scholar
  6. 6.
    Fierascu I, Georgiev MI, Ortan A, Fierascu RC, Avramescu SM, Ionescu D, Sutan A, Brinzan A, Ditu LM (2017) Phyto-mediated metallic nano-architectures via Melissa officinalis L.: synthesis, characterization and biological properties. Sci Rep 7:12428.  https://doi.org/10.1038/s41598-017-12804-7 CrossRefGoogle Scholar
  7. 7.
    Pařil P, Baar J, Čermák P, Rademacher P, Prucek R, Sivera M, Panáček A (2017) Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. J Mat Sci 52:2720–2729.  https://doi.org/10.1007/s10853-016-0565-5 CrossRefGoogle Scholar
  8. 8.
    Alanazi FK, Radwan AA, Alsarra IA (2010) Biopharmaceutical applications of nanogold. Saudi Pharm J 18:179–193CrossRefGoogle Scholar
  9. 9.
    Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62:346–361CrossRefGoogle Scholar
  10. 10.
    Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces 80:94–102CrossRefGoogle Scholar
  11. 11.
    De Gusseme B, Du Laing G, Hennebel T et al (2010) Virus removal by biogenic cerium. Environ Sci Technol 44:6350–6356CrossRefGoogle Scholar
  12. 12.
    Santhoshkumar T, Rahuman A, Rajakumar G et al (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702CrossRefGoogle Scholar
  13. 13.
    Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189CrossRefGoogle Scholar
  14. 14.
    Baxter-Plant VS, Mikheenko IP, Macaskie LE (2003) Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14:83–90CrossRefGoogle Scholar
  15. 15.
    Gong H, Liu M, Li H (2019) In situ green preparation of silver nanoparticles/chemical pulp fiber composites with excellent catalytic performance. J Mater Sci 54:6895–6907.  https://doi.org/10.1007/s10853-018-03205-w CrossRefGoogle Scholar
  16. 16.
    Bennett JA, Creamer NJ, Deplanche K, Macaskie LE, Shannon IJ, Wood J (2010) Palladium supported on bacterial biomass as a novel heterogeneous catalyst: a comparison of Pd/Al2O3 and bio-Pd in the hydrogenation of 2-pentyne. Chem Eng Sci 65:282–290CrossRefGoogle Scholar
  17. 17.
    Almahfood M, Bai B (2018) The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications. J Petrol Sci Eng 171:196–210CrossRefGoogle Scholar
  18. 18.
    Sekoaia PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397.  https://doi.org/10.1016/j.fuel.2018.10.030 CrossRefGoogle Scholar
  19. 19.
    Brady B, Wang PH, Steenhoff V, Brolo AG (2019) Nanostructuring solar cells using metallic nanoparticles. In: Kassab LRP, de Araujo CB (eds) Metal nanostructures for photonics. Elsevier, Amsterdam, pp 197–221.  https://doi.org/10.1016/B978-0-08-102378-5.00009-X CrossRefGoogle Scholar
  20. 20.
    Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983.  https://doi.org/10.1039/C3RA44507K CrossRefGoogle Scholar
  21. 21.
    Fahmy HM, Saad OA, Rashed HA, Hessen OEA, Elgamal KHI, Aboelfetouh MM (2017) Alternative green chemistry methods of silver nanoparticles synthesis: review and comparison. J Bionanosci 11:7–16.  https://doi.org/10.1166/jbns.2017.1416 CrossRefGoogle Scholar
  22. 22.
    Koetz J, Kosmella S (2007) Polyelectrolytes and Nanoparticles. Springer, BerlinGoogle Scholar
  23. 23.
    Zezin AA, Klimov DI, Zezina EA, Mkrtchyan KV and Feldman VI (2018) Controlled radiation-chemical synthesis of metal polymer nanocomposites in the films of interpolyelectrolyte complexes: principles, prospects and implications. Rad Phys Chem.  https://doi.org/10.1016/j.radphyschem.2018.11.030
  24. 24.
    Şuţan NA, Fierăscu I, Fierăscu RC, Manolescu DS, Soare LC (2016) Comparative analytical characterization and in vitro cytogenotoxic activity evaluation of Asplenium scolopendrium L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. Ind Crop Prod 83:379–386.  https://doi.org/10.1016/j.indcrop.2016.01.011 CrossRefGoogle Scholar
  25. 25.
    Flores-Rojas GG, López-Saucedo F and Bucio E (2018) Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Rad Phys Chem.  https://doi.org/10.1016/j.radphyschem.2018.08.011
  26. 26.
    Huang NM, Radiman S, Lim HN, Khiew PS, Chiu WS, Lee KH, Syahida A, Hashim R, Chia CH (2009) γ-Ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chem Eng J 155:499–507.  https://doi.org/10.1016/j.cej.2009.07.040 CrossRefGoogle Scholar
  27. 27.
    Hareesha K, Sunitha DV, Dhole SD, Bhoraskar VN, Phase DM, Williams J (2019) One-step gamma radiation aided diffusion of Ag-Au alloy nanoparticles into polycarbonate and its application towards the reduction of 4-Nitrophenol. Rad Phys Chem 162:126–130.  https://doi.org/10.1016/j.radphyschem.2019.04.059 CrossRefGoogle Scholar
  28. 28.
    Zhao X, Li N, Jing M, Zhang Y, Wang W, Liu L, Xu Z, Liu L, Li F, Wu N (2019) Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in situ synthesis for nitrite electrochemical sensing. Electrochim Acta 295:434–443.  https://doi.org/10.1016/j.electacta.2018.10.039 CrossRefGoogle Scholar
  29. 29.
    Fierascu RC, Georgiev MI, Fierascu I et al (2018) Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem Toxicol 111:44–52.  https://doi.org/10.1016/j.fct.2017.11.008 CrossRefGoogle Scholar
  30. 30.
    Lungulescu EM, Sbarcea G, Setnescu R, Nicula N, Lupu (Luchian) AM, Ion I and Marinescu V (2019) Gamma radiation synthesis of colloidal silver nanoparticles. Rev Chim (in press)Google Scholar
  31. 31.
    Sutan NA, Manolescu DS, Fierascu I et al (2018) Phytosynthesis of gold and silver nanoparticles enhance in vitro antioxidant and mitostimulatory activity of Aconitum toxicum Reichenb. rhizomes alcoholic extracts. Mat Sci Eng C Mater Biol Appl 93:746–758.  https://doi.org/10.1016/j.msec.2018.08.042 CrossRefGoogle Scholar
  32. 32.
    Ravichandra NG (2014) Horticultural Nematology. Springer India, New DehliCrossRefGoogle Scholar
  33. 33.
    Tedesco SB, Laughinghouse HD IV (2012) Bioindicator of genotoxicity: the Allium cepa test. In: Srivastava JK (ed) Environmental Contamination. InTech, Rijeka, pp 137–156Google Scholar
  34. 34.
    Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C Mater Biol Appl 97:954–965.  https://doi.org/10.1016/j.msec.2018.12.102 CrossRefGoogle Scholar
  35. 35.
    Aziz SB, Abdullah OG, Saber DR, Rasheed MA, Ahmed HM (2017) Investigation of metallic silver nanoparticles through UV–Vis and optical micrograph techniques. Int J Electrochem Sci 12:363–373.  https://doi.org/10.20964/2017.01.22 CrossRefGoogle Scholar
  36. 36.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759.  https://doi.org/10.1063/1.1462610 CrossRefGoogle Scholar
  37. 37.
    Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8:474–484CrossRefGoogle Scholar
  38. 38.
    Abedini A, Menon PS, Daud AR, Hamid MAA, Shaari S (2016) Radiolytic formation of highly luminescent triangular Ag nanocolloids. J Radioanal Nucl Chem 307:985–991CrossRefGoogle Scholar
  39. 39.
    Lai T, Park HG, Choi SH (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105:325–330CrossRefGoogle Scholar
  40. 40.
    Bahadori MB, Kordi FM, Ahmadi AA, Bahadori Sh, Valizadeh H (2015) Antibacterial evaluation and preliminary phytochemical screening of selected ferns from Iran. Res J Pharmacogn 2:53–59Google Scholar
  41. 41.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582.  https://doi.org/10.1128/CMR.12.4.564 CrossRefGoogle Scholar
  42. 42.
    Nzogong RT, Ndjateu FST, Ekom SE et al (2018) Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complement Altern Med 18:159.  https://doi.org/10.1186/s12906-018-2229-2 CrossRefGoogle Scholar
  43. 43.
    Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB (2017) Coumarins: the antimicrobial agents. Sys Rev Pharm 8:62–70.  https://doi.org/10.5530/srp.2017.1.11 CrossRefGoogle Scholar
  44. 44.
    Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:963248.  https://doi.org/10.1155/2013/963248 CrossRefGoogle Scholar
  45. 45.
    Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S (2009) Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules 14:939–952.  https://doi.org/10.3390/molecules14030939 CrossRefGoogle Scholar
  46. 46.
    Pereira TM, Franco DP, Vitorio F, Kummerle AE (2018) Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr Top Med Chem 18:124–148.  https://doi.org/10.2174/1568026618666180329115523 CrossRefGoogle Scholar
  47. 47.
    Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O Gara F (2018) Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol 102:2063–2073.  https://doi.org/10.1007/s00253-018-8787-x CrossRefGoogle Scholar
  48. 48.
    Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831.  https://doi.org/10.3389/fmicb.2016.01831 CrossRefGoogle Scholar
  49. 49.
    Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128CrossRefGoogle Scholar
  50. 50.
    Sarwar A, Katas H, Samsudin SN, Zin NM (2015) Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of chitosan derivatives and nanoparticles. PLoS ONE 10(4):0123084.  https://doi.org/10.1371/journal.pone.0123084 CrossRefGoogle Scholar
  51. 51.
    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nano-particle uptake efficiency. J Am Chem Soc 135:1438–1444CrossRefGoogle Scholar
  52. 52.
    Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225.  https://doi.org/10.2147/IJN.S132163 CrossRefGoogle Scholar
  53. 53.
    Qing Y, Cheng L, Li R et al (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327.  https://doi.org/10.2147/IJN.S165125 CrossRefGoogle Scholar
  54. 54.
    Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527.  https://doi.org/10.1111/j.1365-2672.2010.04677.x CrossRefGoogle Scholar
  55. 55.
    Li J, Rong K, Zhao H, Li F, Lu Z, Chen R (2013) Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J Nanosci Nanotechnol 13:6806–6813.  https://doi.org/10.1166/jnn.2013.7781 CrossRefGoogle Scholar
  56. 56.
    Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424.  https://doi.org/10.1007/s11947-011-0573-z CrossRefGoogle Scholar
  57. 57.
    Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7:227–233.  https://doi.org/10.1016/j.apjtb.2016.12.014 CrossRefGoogle Scholar
  58. 58.
    Kritika B, Kumar SA, Mukeshchand T, Arfat KY, Kanchanlata S, Mustansir B (2014) Colloidal silver nanoparticles from Ocimum sanctum: synthesis, separation and their implications on pathogenic microorganisms, human keratinocyte cells, and Allium cepa root tips. J Colloid Sci Biotechnol 3:245–252.  https://doi.org/10.1166/jcsb.2014.1095 CrossRefGoogle Scholar
  59. 59.
    Soare LC, Şuţan NA (2018) Current trends in pteridophyte extracts: from plant to nanoparticles. In: Fernández H (ed) Current Advances in Fern Research. Springer, Cham, pp 329–357CrossRefGoogle Scholar
  60. 60.
    Fouad AS, Hafez RM (2018) The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biol Plant 62:166–172.  https://doi.org/10.1007/s10535-017-0751-6 CrossRefGoogle Scholar
  61. 61.
    Scherer MD, Sposito JCV, Falco WF et al (2019) Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ 660:459–467.  https://doi.org/10.1016/j.scitotenv.2018.12.444 CrossRefGoogle Scholar
  62. 62.
    Pesnya DS (2013) Cytogenetic effects of chitosan-capped silver nanoparticles in the Allium cepa test. Caryologia 66:275–281.  https://doi.org/10.1080/00087114.2013.852342 CrossRefGoogle Scholar
  63. 63.
    Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11.  https://doi.org/10.1186/1743-8977-11-11 CrossRefGoogle Scholar
  64. 64.
    Liu YP, Araya SI, Nakamura T (1992) Arrest in late G2 or prophase of cell cycle induced by 4,4-(l,2-ethanediyl) bis (1-isobutoxycarbonyloxymethyl 2, 6-piperazinedione) (MST-16) in cultured l1210 cells. Int J Cancer 51:792–797CrossRefGoogle Scholar
  65. 65.
    Scolnick D, Halazonetis T (2000) Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406:430–435.  https://doi.org/10.1038/35019108 CrossRefGoogle Scholar
  66. 66.
    Kiełkowska A (2017) Allium cepa root meristem cells under osmotic (sorbitol) and salt (NaCl) stress in vitro. Acta Bot Croat 76:146–153.  https://doi.org/10.1515/botcro-2017-0009 CrossRefGoogle Scholar
  67. 67.
    Bianchi J, Fernandes TCC, Marin-Morales MA (2016) Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere 144:475–483.  https://doi.org/10.1016/j.chemosphere.2015.09.021 CrossRefGoogle Scholar
  68. 68.
    Daphedar A, Taranath TC (2018) Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt & McCann) Stearn. Toxicol Rep 5:910–918.  https://doi.org/10.1016/j.toxrep.2018.08.018 CrossRefGoogle Scholar
  69. 69.
    Wise JP Sr, Goodale BC, Wise SS et al (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97:34–41.  https://doi.org/10.1016/j.aquatox.2009.11.016 CrossRefGoogle Scholar
  70. 70.
    Butnariu M, Samfira I, Sarac I, Negrea A, Negrea P (2015) Allelopathic effects of Pteridium aquilinum alcoholic extract on seed germination and seedling growth of Poa pratensis. Allelopathy J 35:227–236Google Scholar
  71. 71.
    Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090.  https://doi.org/10.1021/es302973y CrossRefGoogle Scholar
  72. 72.
    Nam SH, An YJ (2019) Size- and shape-dependent toxicity of silver nanomaterials in green alg. Chlorococcum infusionum. Ecotoxicol Environ Saf 168:388–393.  https://doi.org/10.1016/j.ecoenv.2018.10.082 CrossRefGoogle Scholar
  73. 73.
    Sarropoulou V, Dimassi-Theriou K, Therios I (2015) Medium strength in inorganic and PVP concentration effect on cherry rootstocks in vitro rooting. Hort Sci 42:185–192.  https://doi.org/10.17221/359/2014-HORTSCI CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Emerging Nanotechnologies GroupNational Institute for Research and Development in Chemistry and Petrochemistry – ICECHIM BucharestBucharestRomania
  2. 2.Department of Metallic Composite and Polymeric MaterialsNational Institute for R&D in Electrical Engineering ICPE – CABucharestRomania
  3. 3.Microbiology DepartmentUniversity of BucharestBucharestRomania
  4. 4.Faculty of Applied Chemistry and Material ScienceUniversity Politehnica of BucharestBucharestRomania
  5. 5.Department of Natural SciencesUniversity of PitestiArgesRomania

Personalised recommendations