Journal of Materials Science

, Volume 54, Issue 17, pp 11739–11755 | Cite as

Diesel-induced transparency of plastically deformed high-density polyethylene

  • Maren Erdmann
  • Andreas KupschEmail author
  • Bernd R. Müller
  • Manfred P. Hentschel
  • Ute Niebergall
  • Martin Böhning
  • Giovanni Bruno
Polymers & biopolymers


High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching.



The authors kindly acknowledge Oliver Schwarze and Fabian Roth for the preparation of the tensile test specimens. We thank Thomas Rybak for the assistance with DSC measurements and Lothar Buchta for the assistance with optical pictures. This study was supported by BAM within the project “Microbial Induced Corrosion” in the focus area “Material”.


  1. 1.
    Bunn CW (1939) The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the > CH2 group. Trans Faraday Soc 35:482–491CrossRefGoogle Scholar
  2. 2.
    Strobl GR (2007) The physics of polymers. Springer-Verlag, Berlin, pp 165–225Google Scholar
  3. 3.
    Sperling LH (2005) The crystalline state. In: Sperling LH (ed) Introduction to physical polymer science. Wiley, London, pp 239–324CrossRefGoogle Scholar
  4. 4.
    Baccaredda M, Schiavinato G (1954) Refractive indices of polythenes with different degrees of branching. J Polym Sci 12:155–158CrossRefGoogle Scholar
  5. 5.
    Bryant WMD (1947) Polythene fine structure. J Polym Sci 2:547–564CrossRefGoogle Scholar
  6. 6.
    Hay IL, Keller A (1965) Polymer deformation in terms of spherulites. Kolloid Z u Z Polym 204:43–74CrossRefGoogle Scholar
  7. 7.
    Meinel G, Morosoff N, Peterlin A (1970) Plastic deformation of polyethylene. I. Change of morphology during drawing of polyethylene of high density. J Polym Sci Part A-2: Polym Phys 8:1723–1740CrossRefGoogle Scholar
  8. 8.
    Meinel G, Peterlin A (1971) Plastic deformation of polyethylene II. Change of mechanical properties during drawing. J Polym Sci Part A-2: Polym Phys 9:67–83CrossRefGoogle Scholar
  9. 9.
    Pawlak A, Gałęski A (2010) Cavitation during tensile drawing of annealed high density polyethylene. Polymer 51:5771–5779CrossRefGoogle Scholar
  10. 10.
    Pawlak A, Gałęski A, Różański A (2014) Cavitation during deformation of semicrystalline polymers. Pro Polym Sci 39:921–958CrossRefGoogle Scholar
  11. 11.
    Lin L, Argon AS (1994) Structure and plastic deformation of polyethylene. J Mater Sci 29:294–323. CrossRefGoogle Scholar
  12. 12.
    Różański A, Gałęski A (2011) Controlling cavitation of semicrystalline polymers during tensile drawing. Macromolecules 44:7273–7287CrossRefGoogle Scholar
  13. 13.
    Gałęski A, Różański A (2010) Cavitation during drawing of crystalline polymers. Macromol Symp 298:1–9CrossRefGoogle Scholar
  14. 14.
    Men Y, Rieger J, Homeyer J (2004) Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly(1-butene). Macromolecules 37:9481–9488CrossRefGoogle Scholar
  15. 15.
    Lu Y, Men Y (2018) Cavitation-induced stress whitening in semi-crystalline polymers. Macromol Mater Eng 303:1800203CrossRefGoogle Scholar
  16. 16.
    Pawlak A (2007) Cavitation during tensile deformation of high-density polyethylene. Polymer 48:1397–1409CrossRefGoogle Scholar
  17. 17.
    Peterlin A (1975) Plastic deformation of polymers with fibrous structure. J Colloid Polym Sci 253:809–823CrossRefGoogle Scholar
  18. 18.
    Peterlin A (1975) Structural model of mechanical properties and failure of crystalline polymer solids with fibrous structure. Int J Fract 11:761–780CrossRefGoogle Scholar
  19. 19.
    Pawlak A, Gałęski A (2011) Cavitation during tensile drawing of semicrystalline polymers. Polimery 56:627–636CrossRefGoogle Scholar
  20. 20.
    Butler MF, Donald AM (1998) A real-time simultaneous small- and wide-angle X-ray scattering study of in situ polyethylene deformation at elevated temperatures. Macromolecules 3:6234–6249CrossRefGoogle Scholar
  21. 21.
    Jiang Z, Tang Y, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Wu Z, Li Z, Li X, Men Y (2010) Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: synchrotron small-angle X-ray scattering study. Eur Polym J 46:1866–1877CrossRefGoogle Scholar
  22. 22.
    Różański A, Gałęski A (2013) Plastic yielding of semicrystalline polymers affected by amorphous phase. Int J Plast 41:14–29CrossRefGoogle Scholar
  23. 23.
    Erdmann M, Böhning M, Niebergall U (2019) Physical and chemical effects of biodiesel storage on high-density polyethylene: evidence of co-oxidation. Polym Degrad Stabil 161:139–149CrossRefGoogle Scholar
  24. 24.
    Böhning M, Niebergall U, Zanotto M, Wachtendorf V (2016) Impact of biodiesel sorption on tensile properties of PE-HD for container applications. Polym Test 50:315–324CrossRefGoogle Scholar
  25. 25.
    Immergut EH, Mark HF (1965) Principles of plasticization. In: Platzer NAJ (ed) Plasticization and plasticizer processes, advances in chemistry. American Chemical Society, Washington, pp 1–26Google Scholar
  26. 26.
    Wypych G (2017) Handbook of plasticizers, 3rd edn. ChemTec Publishing, Toronto, pp 3–6Google Scholar
  27. 27.
    Böhning M, Niebergall U, Adam A, Stark W (2014) Impact of biodiesel sorption on mechanical properties of polyethylene. Polym Test 34:17–24CrossRefGoogle Scholar
  28. 28.
    ISO 293:2004 (2004) Plastics—compression moulding of test specimens of thermoplastic materials, pp 1–6Google Scholar
  29. 29.
    ISO 527-2:2012 (2012) Plastics—determination of tensile properties—part 2: test conditions for moulding and extrusion plastics, pp 1–11Google Scholar
  30. 30.
    EN 590:2013+AC:2014 (2014) Automotive fuels—Diesel—Requirements and test methods; German version, pp 1–11Google Scholar
  31. 31.
    Wunderlich B, Cormier CM (1967) Heat of fusion of polyethylene. J Polym Sci Part A-2: Polym Phys 5:987–988CrossRefGoogle Scholar
  32. 32.
    Laue MTF, Wagner EH (1960) Röntgenstrahl-Interferenzen. Akademische Verlagsgesellschaft, Frankfurt am Main, pp 123–140Google Scholar
  33. 33.
    Hentschel MP, Hosemann R, Lange A, Uther B, Brückner R (1987) Small-angle X-ray refraction in metal wires, glass-fibers and hard elastic propylenes. Acta Crystallogr A 43:506–513CrossRefGoogle Scholar
  34. 34.
    Evsevleev S, Müller BR, Lange A, Kupsch A (2019) Refraction driven X-ray caustics at curved interfaces. Nucl Instrum Methods Phys Res A 916:275–282CrossRefGoogle Scholar
  35. 35.
    Hentschel MP, Harbich KW, Ekenhorst D, Schors J (1997) X-ray topographic methods for composite fibre and matrix orientation. Materialprüfung 39:121–123Google Scholar
  36. 36.
    Kupsch A, Lange A, Hentschel MP, Onel Y, Wolk T, Staude A, Ehrig K, Müller BR, Bruno G (2013) Evaluating porosity in cordierite-based diesel particulate filter materials. Part 1—X-ray refraction. J Ceram Sci Tech 4:169–176Google Scholar
  37. 37.
    Kupsch A, Müller BR, Lange A, Bruno G (2017) Microstructure characterization of ceramics via 2D and 3D X-ray refraction techniques. J Eur Ceram Soc 37:1879–1889CrossRefGoogle Scholar
  38. 38.
    Müller BR, Cooper RC, Lange A, Kupsch A, Wheeler M, Hentschel MP, Staude A, Pandey A, Shyam A, Bruno G (2018) Stress-induced microcrack density evolution in ß-eucryptite ceramics: experimental observations and possible route to strain hardening. Acta Mater 144:627–641CrossRefGoogle Scholar
  39. 39.
    Nellesen J, Laquai L, Müller BR, Kupsch A, Hentschel MP, Anar NB, Soppa E, Tillmann W, Bruno G (2018) In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging. J Mater Sci 53:6021–6032. CrossRefGoogle Scholar
  40. 40.
    Laquai R, Müller BR, Kasperovich G, Haubrich J, Requena G, Bruno G (2018) X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti–6Al–4V. Mater Res Lett 6:130–135CrossRefGoogle Scholar
  41. 41.
    Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press Inc. Ltd, London, pp 53–83Google Scholar
  42. 42.
    Fensch-Kleemann FE, Harbich KW, Hentschel MP (2002) Microstructural characterisation of porous ceramics by X-Ray refraction topography, cfi/Ber. DKG 79:35–38Google Scholar
  43. 43.
    Zhang Y, Ben Jar BY, Xue S, Li L (2019) Quantification of strain-induced damage in semi-crystalline polymers: a review. J Mater Sci 54:62–82. CrossRefGoogle Scholar
  44. 44.
    Gooch JW (ed) (2007) Encyclopedic dictionary of polymers. Springer, New York, p 1081Google Scholar
  45. 45.
    Wunderlich B, Czornyj G (1977) A study of equilibrium melting of polyethylene. Macromolecules 10:906–913CrossRefGoogle Scholar
  46. 46.
    Bartczak Z, Gałęski A (2010) Plasticity of semicrystalline polymers. Macromol Symp 294:67–90CrossRefGoogle Scholar
  47. 47.
    Jiang Z, Tang Y, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Wu Z, Li Z, Men Y (2009) Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer 50:4101–4111CrossRefGoogle Scholar
  48. 48.
    Kono A, Miyakawa N, Kawadai S, Goto Y, Maruoka T, Yamamoto M, Horibe H (2010) Effect of cooling rate after polymer melting on electrical properties of high-density polyethylene/Ni composites. Polym J 42:587–591CrossRefGoogle Scholar
  49. 49.
    Hiss R, Hobeika S, Lynn C, Strobl G (1999) Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 32:4390–4403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany
  2. 2.Polymer Engineering and PhysicsTechnical University BerlinBerlinGermany
  3. 3.Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations