Advertisement

Journal of Materials Science

, Volume 54, Issue 17, pp 11694–11702 | Cite as

Frequency-dependent material properties of copper and aluminum alloys

  • Daniel LoosEmail author
  • Endre Barti
  • Gunter Schröter
  • Rainer Wagener
  • Tobias Melz
Metals
  • 104 Downloads

Abstract

In this paper, the dynamic behavior of copper and aluminum alloys as used in electric drive units is investigated. Isothermal frequency sweeps are performed from 0.1 up to 50 Hz at temperatures of up to 400 °C. An evaluation of the test results at a constant frequency of 1 Hz shows a decrease in the storage modulus and an increase in the material damping. Considering all frequencies, a supplementary frequency dependency related to the material composition is detected. The lower the volume fraction of the alloying elements, the higher the impact of temperature and frequency on the material properties. The variations of the material parameters allow applying the time temperature superposition principle to estimate the dynamic behavior beyond the limited tested frequency range and temperatures by fitting the Williams–Landel–Ferry equation. Additional thermal aging of CU-ETP specimens does not affect the storage modulus, but diminishes the material damping. The findings show that each material has to be tested with regard to its respective application, material composition and manufacturing process. Furthermore, they demonstrate the relevance of considering the frequency-dependent material properties of low-alloyed copper and aluminum, especially in case of temperatures above 100 °C.

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dimarogonas AD (1976) Vibration engineering. West Publishing St Paul, New YorkGoogle Scholar
  2. 2.
    Agrawal BK (1988) Introduction to engineering materials. Tata McGraw-Hill Education, New DelhiGoogle Scholar
  3. 3.
    Rennert R (2012) Rechnerischer Festigkeitsnachweis: für Maschinenbauteile aus Stahl, Eisenguss- und Aluminiumwerkstoffen, 6th edn. VDMA-Verlag, Frankfurt am MainGoogle Scholar
  4. 4.
    Botelho EC, Campos AN, de Barros E, Pardini LC, Rezende MC (2005) Damping behavior of continuous fiber/metal composite materials by the free vibration method. Compos B Eng 37:255–263.  https://doi.org/10.1016/j.compositesb.2005.04.003 CrossRefGoogle Scholar
  5. 5.
    Ben BS, Ben BA, Adarsh K, Vikram KA, Ratnam C (2013) Damping measurement in composite materials using combined finite element and frequency response method. Int J Eng Sci Invent 89–97Google Scholar
  6. 6.
    Umashankar KS, Abhinav A, Gangadharan KV, Vijay D (2009) Damping behaviour of cast and sintered aluminium. J Eng Appl Sci 4:66–71Google Scholar
  7. 7.
    Colakoglu M (2004) Factors effecting internal damping in aluminum. J Theor Appl Mech 42:95–105Google Scholar
  8. 8.
    Sugita KGI, Soekrisno R, Suyitno MMI (2011) Mechanical and damping properties of silicon bronze alloys for music applications. Int J Eng Technol 11:98–105Google Scholar
  9. 9.
    ASTM International (2006) Standard test method for dynamic young’s modulus, shear modulus, and poisson’s ratio by impulse excitation of vibration, ASTM E1876-01.  https://doi.org/10.1520/e1876-01r06
  10. 10.
    Lamanna E, Gupta N, Cappa P, Strbik OM, Cho KC (2016) Evaluation of the dynamic properties of an aluminum syntactic foam core sandwich. J Alloy Compd 695:2987–2994.  https://doi.org/10.1016/j.jallcom.2016.11.361 CrossRefGoogle Scholar
  11. 11.
    Ramesh K, Ranka S, Kumar S, Pandey A (2016) Investigation on the damping characteristics of AL-NI metal matrix composites. J Chem Pharm Sci 9(3):1761–1764Google Scholar
  12. 12.
    Mevada H, Patel D (2016) Experimental determination of structural damping of different materials. Procedia Eng 144:110–115.  https://doi.org/10.1016/j.proeng.2016.05.013 CrossRefGoogle Scholar
  13. 13.
    Li G, Lee-Sullivan P, Thring RW (2000) Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis. J Therm Anal Calorim 60:377–390.  https://doi.org/10.1023/A:1010120921582 CrossRefGoogle Scholar
  14. 14.
    Cox J, Luong DD, Shunmugasamy VC, Gupta N, Strbik OM, Cho KC (2004) Dynamic and thermal properties of aluminum alloy A356/silicon carbide hollow particle syntactic foams. Metals 4:530–548.  https://doi.org/10.3390/met4040530 CrossRefGoogle Scholar
  15. 15.
    Bálint K, Szlancsik A, Tábi T, Orbulov IN (2019) Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mater Sci Eng, A 739:140–148.  https://doi.org/10.1016/j.msea.2018.10.014 CrossRefGoogle Scholar
  16. 16.
    Wei JN, Gong CL, Cheng HF, Zhou ZC, Li ZB, Shui JP, Han FS (2002) Low-frequency damping behavior of foamed commercially pure aluminum. Mater Sci Eng, A 332:375–381.  https://doi.org/10.1016/S0921-5093(01)01950-5 CrossRefGoogle Scholar
  17. 17.
    Wei JN, Cheng HF, Zhang YF, Han FS, Zhou ZC, Shui JP (2002) Effects of macroscopic graphite particulates on the damping behavior of commercially pure aluminum. Mater Sci Eng, A 325:444–453.  https://doi.org/10.1016/S0921-5093(01)01535-0 CrossRefGoogle Scholar
  18. 18.
    Xie CY, Schaller R, Jaquerod C (1998) High damping capacity after precipitation in some commercial aluminum alloys. Mater Sci Eng, A 252:78–84.  https://doi.org/10.1016/S0921-5093(98)00683-2 CrossRefGoogle Scholar
  19. 19.
    Wong CR, Diehm O, Van Aken DC (1990) Damping capacity of aluminum 6061-Indium alloys, DTRC-SME-89/111. https://apps.dtic.mil/dtic/tr/fulltext/u2/a222802.pdf
  20. 20.
    Shenglong D, Dabo L, Tianzhen W, Chunyu L (1998) Damping behaviour and mechanical properties of rapidly solidified Al-Fe-Mo-Si/Al alloys. J Mater Sci 33:2227–2231.  https://doi.org/10.1023/A:1004352106491 CrossRefGoogle Scholar
  21. 21.
    Licitra L, Luong DD, Strbik OM, Gupta N (2015) Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Mater Des 66:504–515.  https://doi.org/10.1016/j.matdes.2014.03.041 CrossRefGoogle Scholar
  22. 22.
    Anantharaman H, Chakravarthy V, Strbik OM, Gupta N, Cho KC (2015) Dynamic properties of silicon carbide hollow particle filled magnesium alloy (AZ91D) matrix syntactic foams. Int J Impact Eng 82:14–24.  https://doi.org/10.1016/j.ijimpeng.2015.04.008 CrossRefGoogle Scholar
  23. 23.
    Christensen RM (1971) Theory of viscoelasticity: an introduction. Academic Press Inc, New YorkGoogle Scholar
  24. 24.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Hiemenz PC, Lodge TP (2007) Polymer Chemistry, 2nd edn. Taylor & Francis Group, FloridaGoogle Scholar
  26. 26.
    Menard KP (1999) Dynamic mechanical analysis: A practical introduction, 1st edn. CRC Press, FloridaCrossRefGoogle Scholar
  27. 27.
    Deutsches Institut für Normung, Copper and copper alloys—compendium of compositions and products, DIN SPEC 9700:2015-08Google Scholar
  28. 28.
    Deutsches Institut für Normung, Aluminium and aluminium alloys—Chemical composition and form of wrought products, DIN EN 573-3:2013-12Google Scholar
  29. 29.
    Davis JR (2001) ASM specialty handbook: copper and copper alloys. ASM International, OhioGoogle Scholar
  30. 30.
    Belkin E, Nagata PK (1975) Hydrogen embrittlement of tough pitch copper by brazing. Weld Res Suppl 54:54–62Google Scholar
  31. 31.
    McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, 2nd edn. In: International union of pure and applied chemistryGoogle Scholar
  32. 32.
    Menczel JD, Bruce R (2014) Thermal analysis of polymers: fundamentals and applications. Wiley, New JerseyGoogle Scholar
  33. 33.
    International Organization for Standardization (2011) Plastics—Determination of dynamic mechanical properties, ISO 6721-1Google Scholar
  34. 34.
    ASTM International (2013) Standard terminology for plastics: dynamic mechanical properties, ASTM D4092-07.  https://doi.org/10.1520/d4092-07r13
  35. 35.
    Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics, Carl Hanser Verlag GmbH & Co. KG. Doi:  https://doi.org/10.3139/9783446434141
  36. 36.
    Figuli R, Schwab L, Lacayo-Pineda J, Deckmann H, Wilhelm M (2016) Combined dielectric (DEA) and dynamic mechanical thermal analysis (DMTA) in Compression Mode, Kautschuk Gummi Kunststoffe. 30–35Google Scholar
  37. 37.
    Jaroschek C (2012) The end of the flexural modulus. J Plast Technol 8:515–524Google Scholar
  38. 38.
    Shunmugasamy VC, Pinisetty D, Gupta N (2013) Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency. J Mater Sci 48:1685–1701.  https://doi.org/10.1007/s10853-012-6927-8 CrossRefGoogle Scholar
  39. 39.
    Bozorg-Haddad A, Iskander M (2011) Comparison of accelerated compressive creep behavior of virgin HDPE using thermal and energy approaches. J Mater Eng Perform 20:1219–1229.  https://doi.org/10.1007/s11665-010-9743-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BMW GroupMunichGermany
  2. 2.Fraunhofer Institute for Structural Durability and System Reliability LBFDarmstadtGermany

Personalised recommendations