Advertisement

Stability and physical properties tuning via interstitials chemical engineering of Zr5Sn3: a first-principles study

  • Hongmei Chen
  • Yu Cao
  • Ke Liu
  • Xiaoma Tao
  • Yulu Zhou
  • Yifang OuyangEmail author
  • Fei Gao
  • Yong Du
  • Qing PengEmail author
Computation and theory
  • 14 Downloads

Abstract

Hexagonal binary intermetallics A5B3 has a unique A6 octahedra chain structure, providing space for interstitial chemical engineering the physical, mechanical, electrical, and chemical properties without change in the basic structure of crystal. Because of the engineering importance of Zr–Sn alloy, here, we investigate the influence of 24 interstitial alloying elements X (X = B, C, N, O, Al, Si, P, S, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Nb, and Sn) on stability and properties of hexagonal Zr5Sn3 via first-principles calculations. A general trend is that the additional element with small atom size and high electronegativity is favorable as interstitials in Zr5Sn3. The calculated formation enthalpy and the elastic constants suggest that these Zr5Sn3X structures are thermodynamically and mechanically stable. The calculated phonon spectra indicate that Zr5Sn3X structures are dynamically stable except X = V, Cr, Mn, Zn, and Nb. We show that their electronic structures including bonding characters have strong correlation with the stability and mechanical properties. With strong covalent bonds, Zr5Sn3B has the highest Young’s modulus, bulk modulus, shear modulus, Debye temperature, and microhardness. The addition of alloying elements decreases the anisotropy except X = O, Sc, Ti, V and Nb. All the additive elements increase the specific heat capacity of Zr5Sn3. Our results could be helpful in designing and improve the performance of Zr–Sn alloy on demand.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11464001, 51531009 and 51661003), the Guangxi Natural Science Foundation (2014GXNSFAA118308, 2016GXNSFBA380166).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

Supplementary material

10853_2019_3622_MOESM1_ESM.pdf (6.5 mb)
Supplementary material 1 (PDF 6607 kb)

References

  1. 1.
    Wei J, Frankel P, Polatidis E, Blat M, Ambard A, Comstock RJ, Hallstadius L, Hudson D, Smith GDW, Grovener CRM, Klaus M, Cottis RA, Lyon S, Preuss M (2013) The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr–Sn–Nb alloys. Acta Mater 61:4200–4214CrossRefGoogle Scholar
  2. 2.
    Zhang R, Jiang B, Pang C, Dai X, Sun Y, Liao W, Wang Q, Dong C (2017) New low-Sn Zr cladding alloys with excellent autoclave corrosion resistance and high strength. Metals 7:144CrossRefGoogle Scholar
  3. 3.
    McPherson DJ, Hansen M (1953) The system zirconium–tin. Trans ASM 45:915–933Google Scholar
  4. 4.
    Carpenter GJ, Ibrahim EF, Watters JF (1981) The aging response of zirconium–tin alloys. J Nucl Mater 102:280–291CrossRefGoogle Scholar
  5. 5.
    Arias D, Roberti L (1983) The solubility of tin in α and β zirconium below 1000 °C. J Nucl Mater 118:143–149CrossRefGoogle Scholar
  6. 6.
    Baykov VI, Perez RJ, Korzhavyi PA, Sundman B, Johansson B (2006) Structural stability of intermetallic phases in the Zr–Sn system. Scripta Mater 55(5):485–488CrossRefGoogle Scholar
  7. 7.
    Perez RJ, Toffolon-Masclet C, Joubert JM, Sundman B (2008) The Zr–Sn binary system: New experimental results and thermodynamic assessment. Calphad 32(3):593–601CrossRefGoogle Scholar
  8. 8.
    Krishna KM, Prakash DL, Timár G, Fitzner A, Srivastava D, Saibaba N, da Fonseca JQ, Dey GK, Preuss M (2016) The effect of loading direction and Sn alloying on the deformation modes of Zr: an in situ neutron diffraction study. Mater Sci Eng, A 650:497–509CrossRefGoogle Scholar
  9. 9.
    Liu S, Zhan Y, Wu J, Wei X (2015) Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr–Sn system from first-principles calculations. J Phys Chem Solids 86:177–185CrossRefGoogle Scholar
  10. 10.
    Corbett JD, Garcia E, Guloy AM, Hurng WM, Kwon YU, Leon-Escamilla EA (1998) Widespread Interstitial Chemistry of Mn5Si3-Type and Related Phases: hidden Impurities and Opportunities. Chem Mater 10:2824–2836CrossRefGoogle Scholar
  11. 11.
    Garcia E, Corbett JD (1990) Chemistry in the polar intermetallic host zirconium antimonide, Zr5Sb3 Fifteen interstitial compounds. Inorg Chem 29:3274–3282CrossRefGoogle Scholar
  12. 12.
    Kwon YU, Corbett JD (1990) The zirconium–tin system, with particular attention to the Zr5Sn3-Zr5Sn4 region and Zr4Sn. Chem Mater 2:27–33CrossRefGoogle Scholar
  13. 13.
    Kwon YU, Corbett JD (1992) Influence of oxygen on the stability of zirconium–tin (Zr4Sn). Chem Mater 4:187–190CrossRefGoogle Scholar
  14. 14.
    Kwon YU, Corbett JD (1992) Chemistry in polar intermetallic compounds. The interstitial chemistry of zirconium–tin (Zr5Sn3). Chem Mater 4:1348–1355CrossRefGoogle Scholar
  15. 15.
    Balińska A, Kordan V, Misztal R, Pavlyuk V (2015) Electrochemical and thermal insertion of lithium and magnesium into Zr5Sn3. J Solid State Electrochem 19:2481–2490CrossRefGoogle Scholar
  16. 16.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  17. 17.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1777CrossRefGoogle Scholar
  18. 18.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  19. 19.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. 21.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  22. 22.
    Monkhorst HJ, Pack JD (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106CrossRefGoogle Scholar
  25. 25.
    Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev B 71:809–824CrossRefGoogle Scholar
  26. 26.
    Blanco MA, Francisco E, Luana V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 158:57–72CrossRefGoogle Scholar
  27. 27.
    Wang SQ, Ye HQ (2003) Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:5307–5314Google Scholar
  28. 28.
    Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76:054115-1–054115-15Google Scholar
  29. 29.
    Voigt W (1928) Lehrbuch de Kristallphysik: Teubner-Leipzig. Macmillan, New YorkGoogle Scholar
  30. 30.
    Reuss A (1929) Berechnug der Flieβgrenze von Mischkristallen auf Grund der Plastizifäfsbedingung für Einkristalle. Angew Z Math Mech 9:49–58CrossRefGoogle Scholar
  31. 31.
    Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond. A 65:349–354CrossRefGoogle Scholar
  32. 32.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  33. 33.
    Novotny H, Auer-Welsbach H, Bruss J, Kohl A (1959) Ein Beitrag zur M5Si3-Struktur (D88-Typ). Monatsh Chem 90:15–23CrossRefGoogle Scholar
  34. 34.
    Schubert K, Meissner HG, Raman A, Rossteutscher W (1964) Einige Strukturdaten metallischer Phasen. Naturewiss 51:287CrossRefGoogle Scholar
  35. 35.
    Meschel SV, Kleppa OJ (1998) Standard enthalpies of formation of some 3d, 4d and 5d transition-metal stannides by direct synthesis calorimetry. Thermochim Acta 314:205–212CrossRefGoogle Scholar
  36. 36.
    Yang J, Long J, Yang L, Li D (2013) First-principles investigations of the physical properties of binary uranium silicide alloys. J Nucl Mater 443:195–199CrossRefGoogle Scholar
  37. 37.
    Haines J, Leger JM, Bocquillon G (2001) Synthesis and design of superhard materials. Annu Rev Mater Res 31:1–23CrossRefGoogle Scholar
  38. 38.
    Chen XQ, Niu H, Li D, Li Y (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–1281CrossRefGoogle Scholar
  39. 39.
    Tian Y, Xu B, Zhao Z (2012) Microscopic theory of hardness and design of novel superhard crystals. Int J Refr Met Hard Mater 33:93–106CrossRefGoogle Scholar
  40. 40.
    Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, New YorkGoogle Scholar
  41. 41.
    Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRefGoogle Scholar
  42. 42.
    Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys 84:4891–4904CrossRefGoogle Scholar
  43. 43.
    Compton WD, Gschneidner KA Jr, Hutchings MT, Rabin H, Tosi MP (1964) Physical properties and interrelationships of metallic and semimetallic elements. In: Seitz F, Turnbull D (eds) Solid state physics: advanced in research and applications, vol 16. Academic Press, New York, p 321Google Scholar
  44. 44.
    Eshelby DJ (1954) Distortion of a crystal by point imperfections. J Appl Phys 25:255–261CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and TechnologyGuangxi UniversityNanningChina
  2. 2.Department of Nuclear Engineering and Radiological ScienceUniversity of MichiganAnn ArborUSA
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations