Journal of Materials Science

, Volume 54, Issue 14, pp 10312–10324 | Cite as

Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles

  • Qing Lu
  • Liyue Liu
  • Xiaoling Zhang
  • Yuan Cheng
  • Yue Huang
  • Yongkui Shan
  • Qingbiao Zhao
  • Ganghua Zhang
  • Dezeng LiEmail author
Electronic materials


Graphene-based transparent conductive films (TCFs) are promising alternative to indium tin oxide owing to their high transmittance and conductivity. Graphene films were directly deposited on quartz substrates by assisted catalysis of Cu nanoparticles in ambient pressure chemical vapor deposition. Growth conditions, including the concentration of Cu nanoparticles as catalyst, flow rate of CH4, temperature and growth time, were systematically investigated to optimize the quality and performance of graphene TCFs. With the optimized growth conditions, the obtained graphene TCFs exhibit good performance with sheet resistance of 2.48 kΩ sq−1 at transmittance of 82.83%. With this method, graphene TCFs with good performance were obtained without the need of a complex transfer process of graphene, opening a considerable route toward fabricating graphene TCFs on dielectric substrates.



The authors are grateful for financial support from National Natural Science Foundation of China (No. 61205177).


  1. 1.
    Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210:95–108CrossRefGoogle Scholar
  2. 2.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRefGoogle Scholar
  3. 3.
    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726CrossRefGoogle Scholar
  4. 4.
    Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216CrossRefGoogle Scholar
  5. 5.
    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11(3):203–207CrossRefGoogle Scholar
  6. 6.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRefGoogle Scholar
  7. 7.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  8. 8.
    Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024CrossRefGoogle Scholar
  9. 9.
    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758CrossRefGoogle Scholar
  10. 10.
    Chen S, Cai W, Chen D, Ren Y, Li X, Zhu Y, Kang J, Ruoff RS (2010) Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New J Phys 12(12):125011CrossRefGoogle Scholar
  11. 11.
    Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091CrossRefGoogle Scholar
  12. 12.
    Park S, An J, Suk JW, Ruoff RS (2010) Graphene-based actuators. Small 6(2):210–212CrossRefGoogle Scholar
  13. 13.
    Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S (2014) Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8(1):950–956CrossRefGoogle Scholar
  14. 14.
    Chen ZT, Guo XL, Zhua L, LiL Liu YY, Zhao L, Zhang WJ, Chen J, Zhang Y, Zhao YH (2018) Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J Mater Sci Technol 34(10):209–214CrossRefGoogle Scholar
  15. 15.
    Sun J, Chen Z, Yuan L, Chen YB, Ning J, Liu SW, Ma DL, Song XJ, Priydarshi MK, Bachmatiuk A, Rümmeli MH, Ma TB, Zhi LJ, Huang LB, Zhang YF, Liu ZF (2016) Direct-chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 10(2016):11136–11144CrossRefGoogle Scholar
  16. 16.
    Zhang ZK, Du JH, Zhang DD, Sun HD, Yin LC, Ma LP, Chen JS, Ma DG, Cheng HM, Ren WC (2017) Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun 8:14560CrossRefGoogle Scholar
  17. 17.
    Park IJ, Kim TI, Kang S, Shim GW, Woo Y, Kim TS, Choi SY (2018) Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10:16069–16078CrossRefGoogle Scholar
  18. 18.
    Park IJ, Kim TI, Cho IT, Song CW, Yang JW, Park H, Cheong WS, Im SG, Lee JH, Choi SY (2017) Graphene electrode with tunable charge transport in thin-film transistors. Nano Res 11:274–286CrossRefGoogle Scholar
  19. 19.
    Loh KP, Tong SW, Wu JS (2016) Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc 138(4):1095–1102CrossRefGoogle Scholar
  20. 20.
    Du JH, Jin H, Zhang ZK, Zhang DD, Jia S, Ma LP, Ren WC, Cheng HM, Burn PL (2017) Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer. Nanoscale 9:251–257CrossRefGoogle Scholar
  21. 21.
    Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482CrossRefGoogle Scholar
  22. 22.
    Peng Y, Liu ZK, Tai QD, Liu SH (2015) Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27(24):3632–3638CrossRefGoogle Scholar
  23. 23.
    Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung HS, Choi M (2017) Super flexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci 10:337–345CrossRefGoogle Scholar
  24. 24.
    Notte LL, Bianco GV, Palma AL, Carlo AD, Bruno G, Reale A (2018) Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon 129:878–883CrossRefGoogle Scholar
  25. 25.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRefGoogle Scholar
  26. 26.
    Chen CS, Hsieh CK (2014) An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate. Thin Solid Films 570:595–598CrossRefGoogle Scholar
  27. 27.
    Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873CrossRefGoogle Scholar
  28. 28.
    Zhang J, Hu P, Wang X, Wang Z, Liu D, Yang B, Cao W (2012) CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J Mater Chem 22(35):18283–18290CrossRefGoogle Scholar
  29. 29.
    Kobayashia T, Bando M, Kimura N, Shimizu K, Kadono K (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102(2):023112CrossRefGoogle Scholar
  30. 30.
    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRefGoogle Scholar
  31. 31.
    Golanski L, Rouchon D, Okuno H, Fugier P (2016) Graphene monolayer produced on Pt reusable substrates for transparent conductive electrodes applications. Int J Nanotechnol 13(8–9):678–684CrossRefGoogle Scholar
  32. 32.
    Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z (2013) Single and polycrystalline graphene on Rh (111) following different growth mechanisms. Small 9(8):1360–1366CrossRefGoogle Scholar
  33. 33.
    Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett 9(12):3985–3990CrossRefGoogle Scholar
  34. 34.
    Bi H, Sun S, Huang F, Xie X, Jiang M (2012) Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J Mater Chem 22(2):411–416CrossRefGoogle Scholar
  35. 35.
    Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5(10):8187–8192CrossRefGoogle Scholar
  36. 36.
    Kaplas T, Sharma D, Svirko Y (2012) Few-layer graphene synthesis on a dielectric substrate. Carbon 50(4):1503–1509CrossRefGoogle Scholar
  37. 37.
    Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10(5):1542–1548CrossRefGoogle Scholar
  38. 38.
    Wang Z, Xue Z, Zhang M, Wang Y, Xie X, Chu PK, Zhou P, Di Z, Wang X (2017) Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 13(28):1700929CrossRefGoogle Scholar
  39. 39.
    Teng PY, Lu CC, Hasegawa KA, Lin YC, Yeh CH, Suenaga K, Chiu PW (2012) Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett 12(3):1379–1384CrossRefGoogle Scholar
  40. 40.
    Zhang C, Man BY, Yang C, Jiang SZ, Liu M, Chen CS, Xu SC, Sun ZC, Gao XG, Chen XJ (2013) Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system. Nanotechnology 24(39):395603CrossRefGoogle Scholar
  41. 41.
    Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7(8):6575–6582CrossRefGoogle Scholar
  42. 42.
    Han SS, Yang F, Liu LY, Zhou M, Shan YK, Li DZ (2017) Direct growth of graphene on different templates to fabricate special shapes of graphene by remote catalyzation of Cu nanoparticles. J Mater Sci Technol 33:800–806CrossRefGoogle Scholar
  43. 43.
    Han SS, Liu LY, Shan YK, Yang F, Li DZ (2017) Research of graphene/antireflection nanostructure composite transparent conducting films. J Inorg Mater 32:197–202CrossRefGoogle Scholar
  44. 44.
    Liu LY, Cheng Y, Zhang XL, Shan YK, Zhang X, Wang WY, Li DZ (2017) Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf Coat Technol 325:611–616CrossRefGoogle Scholar
  45. 45.
    Malarda LM, Pimentaa MA, Dresselhausb G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87CrossRefGoogle Scholar
  46. 46.
    Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B (2014) The role of the gas phase in graphene formation by CVD on copper. Chem Vap Deposition 20:51–58CrossRefGoogle Scholar
  47. 47.
    Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88(1–3):163106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China
  3. 3.Shanghai Key Laboratory of Engineering Materials Application and EvaluationShanghai Research Institute of MaterialsShanghaiPeople’s Republic of China

Personalised recommendations