Journal of Materials Science

, Volume 54, Issue 14, pp 10168–10178 | Cite as

Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers

  • DeKun Wang
  • Yanming XueEmail author
  • Chenyang Wang
  • Jiawei Ji
  • Zheng Zhou
  • Chengchun TangEmail author
Chemical routes to materials


In this paper, a novel type of micropore-rich boron nitride (BN) fibers (m-BNFs) was prepared by adding a surfactant hexamethylenetetramine in the traditional melamine-diborate (M·2B) precursor of conventional porous BN fibers (BNFs). As a result, extra micropore distribution could be introduced within m-BNFs bodies. Due to adding of the micropores, the CO2 capture capacities of the BN fibers were improved to be 2.85 mmol g−1, which were significantly higher than that of original porous BNFs. Also, these m-BNFs would have an enhanced adsorption capacity of methane, the amount of up to 0.71 mmol g−1. At the same time, these new m-BNFs materials showed excellent thermal stability, which would be more valuable for advanced gas adsorption working in a high-temperature environment in the future.



This research was financially supported by National Natural Science Foundation of China (Grant Nos.: 51802073, 51372066 and 51402086).

Supplementary material

10853_2019_3617_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3445 kb)


  1. 1.
    Awasthi MK, Wang Q, Chen HY, Wang MJ, Awasthi SK, Ren XN, Cai HZ, Li RH, Zhang ZQ (2018) In-vessel co-composting of biosolid: focusing on mitigation of greenhouse gases emissions and nutrients conservation. Renew Energy 129:814–823CrossRefGoogle Scholar
  2. 2.
    Rassoulinejad-Mousavi SM, Mao YJ, Zhang YW (2018) Reducing greenhouse gas emissions in sandia methane-air flame by using a biofuel. Renew Energy 128:313–323CrossRefGoogle Scholar
  3. 3.
    Sandor R, Ehrhardt F, Brilli L, Carozzi M, Recous S, Smith P, Snow V, Soussana JF, Dorich CD, Fuchs K, Fitton N, Gongadze K, Klumpp K, Liebig M, Martin R, Merbold L, Newton PCD, Rees RM, Rolinski S, Bellocchi G (2018) The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands. Sci Total Environ 642:292–306CrossRefGoogle Scholar
  4. 4.
    Yang YT, Huang Q, Yu HY, Song KF, Ma J, Xu H, Zhang GB (2018) Winter tillage with the incorporation of stubble reduces the net global warming potential and greenhouse gas intensity of double-cropping rice fields. Soil Tillage Res 183:19–27CrossRefGoogle Scholar
  5. 5.
    Alkatheri M, Betancourt-Torcat A, Almansoori A (2018) Comparison of life cycle greenhouse gas emissions from unconventional ultra-sour and conventional gas feedstock for power: a case study of the United Arab Emirates. J Clean Prod 197:908–918CrossRefGoogle Scholar
  6. 6.
    Schreiber A, Zapp P, Kuckshinrichs W (2009) Environmental assessment of german electricity generation from coal-fired power plants with amine-based carbon capture. Int J Life Cycle Ass 14(6):547–559CrossRefGoogle Scholar
  7. 7.
    Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475CrossRefGoogle Scholar
  8. 8.
    Hanak DP, Anthony EJ, Manovic V (2015) A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy Environ Sci 8(8):2199–2249CrossRefGoogle Scholar
  9. 9.
    Fu N, Wei HM, Lin HL, Li L, Ji CH, Yu NB, Chen HJ, Han S, Xiao GY (2017) Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application. ACS Appl Mater Inter 9(11):9955–9963CrossRefGoogle Scholar
  10. 10.
    Hong SM, Choi SW, Kim SH, Lee KB (2016) Porous carbon based on polyvinylidene fluoride: enhancement of CO2 adsorption by physical activation. Carbon 99:354–360CrossRefGoogle Scholar
  11. 11.
    Liu Z, Yang Y, Du Z, Xing W, Komarneni S, Zhang Z, Gao X, Yan Z (2015) Furfuralcohol co-polymerized urea formaldehyde resin-derived N-doped microporous carbon for CO2 capture. Nanoscale Res Lett 10:1041–1051Google Scholar
  12. 12.
    Majumder M, Sheath P, Mardel JI, Harvey TG, Thornton AW, Gonzago A, Kennedy DF, Madsen I, Taylor JW, Turner DR, Hill MR (2012) Aqueous molecular sieving and strong gas adsorption in highly porous MOFs with a facile synthesis. Chem Mater 24(24):4647–4652CrossRefGoogle Scholar
  13. 13.
    Li YW, Yan H, Hu TL, Ma HY, Li DC, Wang SN, Yao QX, Dou JM, Xu J, Bu XH (2017) Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. Chem Commun 53(15):2394–2397CrossRefGoogle Scholar
  14. 14.
    Hu XL, Liu FH, Wang HN, Qin C, Sun CY, Su ZM, Liu FC (2014) Controllable synthesis of isoreticular pillared-layer MOFs: gas adsorption, iodine sorption and sensing small molecules. J Mater Chem A 2(36):14827–14834CrossRefGoogle Scholar
  15. 15.
    Aijaz A, Fujiwara N, Xu Q (2014) From metal–organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136(19):6790–6793CrossRefGoogle Scholar
  16. 16.
    Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439):80–84CrossRefGoogle Scholar
  17. 17.
    Siegelman RL, McDonald TM, Gonzalez MI, Martell JD, Milner PJ, Mason JA, Berger AH, Bhovvn AS, Long JR (2017) Controlling cooperative CO2 adsorption in diamine-appended Mg-2(dobpdc) metal–organic frameworks. J Am Chem Soc 139(30):10526–10538CrossRefGoogle Scholar
  18. 18.
    Lian G, Zhang X, Zhang S, Liu D, Cui D, Wang Q (2012) Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy Environ Sci 5(5):7072–7080CrossRefGoogle Scholar
  19. 19.
    Li J, Xiao X, Xu X, Lin J, Huang Y, Xue Y, Jin P, Zou J, Tang C (2013) Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Sci Rep 3:3208CrossRefGoogle Scholar
  20. 20.
    Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D, Wang X, Jiang X, Bando Y, Golberg D (2014) Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8(6):6123–6130CrossRefGoogle Scholar
  21. 21.
    Weng Q, Wang X, Bando Y, Golberg D (2014) One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv Energy Mater 4(7):1301525CrossRefGoogle Scholar
  22. 22.
    Portehault D, Giordano C, Gervais C, Senkovska I, Kaskel S, Sanchez C, Antonietti M (2010) High-surface-area nanoporous boron carbon nitrides for hydrogen storage. Adv Funct Mater 20(11):1827–1833CrossRefGoogle Scholar
  23. 23.
    Lu X, Zhang M, Jin D, Dang Y, Zhou S, Wei S, Zhu H, Zhao L (2015) Competitive adsorption of CO2/CH4 in porous boron nitride nanomaterials. Mater Lett 161:545–548CrossRefGoogle Scholar
  24. 24.
    Dai P, Xue Y, Wang X, Weng Q, Zhang C, Jiang X, Tang D, Wang X, Kawamoto N, Ide Y, Mitome M, Golberg D, Bando Y (2015) Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. Nanoscale 7(45):18992–18997CrossRefGoogle Scholar
  25. 25.
    Marchesini S, McGilvery CM, Bailey J, Petit C (2017) Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption. ACS Nano 11(10):10003–10011CrossRefGoogle Scholar
  26. 26.
    Yang C, Wang J, Chen Y, Liu D, Huang S, Lei W (2018) One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption. Nanoscale 10(23):10979–10985CrossRefGoogle Scholar
  27. 27.
    Chen S, Li P, Xu S, Pan X, Fu Q, Bao X (2018) Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J Mater Chem A 6(4):1832–1839CrossRefGoogle Scholar
  28. 28.
    Huang K, Liang L, Chai S, Tumuluri U, Li M, Wu Z, Sumpter BG, Dai S (2017) Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide. J Mater Chem A 5(31):16241–16248CrossRefGoogle Scholar
  29. 29.
    Tang C, Bando Y, Huang Y, Zhi C, Golberg D (2008) Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv Funct Mater 18(22):3653–3661CrossRefGoogle Scholar
  30. 30.
    Xue Y, Dai P, Jiang X, Wang X, Zhang C, Tang D, Weng Q, Wang X, Pakdel A, Tang C, Bando Y, Golberg D (2016) Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. J Mater Chem A 4(4):1469–1478CrossRefGoogle Scholar
  31. 31.
    Zhi C, Bando Y, Tang C, Golberg D, Xie R, Sekigushi T (2005) Phonon characteristics and cathodolumininescence of boron nitride nanotubes. Appl Phys Lett 86(21):213110CrossRefGoogle Scholar
  32. 32.
    Li J, Huang Y, Liu Z, Zhang J, Liu X, Luo H, Ma Y, Xu X, Lu Y, Lin J, Zou J, Tang C (2015) Chemical activation of boron nitride fibers for improved cationic dye removal performance. J Mater Chem A 3(15):8185–8193CrossRefGoogle Scholar
  33. 33.
    Song T, Yu C, He X, Lin J, Liu Z, Yang X, Zhang Y, Huang Y, Tang C (2018) Synthesis of magnetically separable porous BN microrods@Fe3O4 nanocomposites for Pb(II) adsorption. Colloid Surf A 537:508–515CrossRefGoogle Scholar
  34. 34.
    Raidongia K, Nag A, Hembram KP, Waghmare UV, Datta R, Rao CN (2010) BCN: a graphene analogue with remarkable adsorptive properties. Chemistry 16(1):149–157CrossRefGoogle Scholar
  35. 35.
    Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58(1):49–52CrossRefGoogle Scholar
  36. 36.
    Sedat Alkoy CT, Gdniil Turgay, Tekin Adnan (1997) Crystallization behavior and characterization of turbostratic boron nitride. J Eur Ceram Soc 17:1415–1422CrossRefGoogle Scholar
  37. 37.
    Neimark AV, Lin Y, Ravikovitch PI, Thommes M (2009) Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7):1617–1628CrossRefGoogle Scholar
  38. 38.
    Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A: Physicochem Eng Aspects 437:3–32CrossRefGoogle Scholar
  39. 39.
    Rehman A, Park S-J (2019) Tunable nitrogen-doped microporous carbons: delineating the role of optimum pore size for enhanced CO2 adsorption. Chem Eng J 362:731–742CrossRefGoogle Scholar
  40. 40.
    Rao L, Ma R, Liu S, Wang L, Wu Z, Yang J, Hu X (2019) Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance. Chem Eng J 362:794–801CrossRefGoogle Scholar
  41. 41.
    Kong L, Zou R, Bi W, Zhong R, Mu W, Liu J, Han RPS, Zou R (2014) Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal–organic framework. J Mater Chem A 2(42):17771–17778CrossRefGoogle Scholar
  42. 42.
    Gamage NDH, McDonald KA, Matzger AJ (2016) MOF-5-polystyrene: direct production from monomer, improved hydrolytic stability, and unique guest adsorption. Angew Chem Int Edit 55(39):12099–12103CrossRefGoogle Scholar
  43. 43.
    Li PX, Chen L, Bertuzzo M, Ren SB, Zhou LY, Lin YQ, Jia WP, Chen XY, Han DM (2019) Pyrene-based hypercrosslinked microporous resins for effective CO2 capture. J Appl Polym Sci 136(16):47448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringHebei University of TechnologyTianjinPeople’s Republic of China
  2. 2.Hebei Key Laboratory of Boron Nitride Micro- and Nano-materialsTianjinPeople’s Republic of China

Personalised recommendations