Advertisement

Journal of Materials Science

, Volume 54, Issue 14, pp 10249–10260 | Cite as

Electronic states of 3D aromatic molecules on Au(111) surfaces: adsorption of carboranethiol

  • Takuto Aoki
  • Yuta Nakahama
  • Tadao Ikeda
  • Masako Shindo
  • Masanobu Uchiyama
  • Ken-ichi ShudoEmail author
Computation and theory
  • 110 Downloads

Abstract

To clarify the effect of covalent surface adsorption on the geometric and electronic structure of carboranes, p-carboranethiol (pCT) was deposited on clean Au(111) surfaces under vacuum and the resulting systems were probed by scanning tunneling microscopy, scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. The spectral features observed at different pCT coverage levels revealed the emergence of new electronic states near the surface, which were analyzed using ab initio calculations. The resulting computational and experimental data are used to explain the contributions of these states to bonding between the substrate and adsorbate, resonance with metallic substrate states and substrate-mediated intermolecular interactions.

Notes

Acknowledgements

The project was financially supported by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research C (Kakenhi 16K04992). Some of the calculations presented here were performed using Hokusai and Sekirei: The supercomputer facilities of the Advanced Center for Computing and Communication, Riken, and the Institute for Solid State Physics, University of Tokyo, respectively. The authors gratefully acknowledge the assistance of Prof. Koichi Ohno (Current affiliation: Tohoku University, and the Institute for Quantum Chemical Exploration) with computation. In addition, K.S. wishes to express special thanks to Dr. Hideaki Muratake (Current affiliation: Katsura Chemical Co., Ltd.) for his assistance with chemical synthesis.

References

  1. 1.
    Di CA, Zhang FJ, Zhu DB (2013) Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv Mater 25:313–330CrossRefGoogle Scholar
  2. 2.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  3. 3.
    Reed CA (2005) Carborane acids. New ‘‘strong yet gentle’’ acids for organic and inorganic chemistry. Chem Commun 36:1669–1677CrossRefGoogle Scholar
  4. 4.
    Tan C, James R, Dong B, Driver MS, Kelber JA, Downing G, Cao LR (2015) Characterization of a boron carbide-based polymer neutron sensor. Nucl Instrum Methods Phys Res A803:82–88CrossRefGoogle Scholar
  5. 5.
    Pasquale FL, Li Y, Du J, Kelber JA (2013) Novel alloy polymers formed from ortho-carborane and benzene or pyridine. J Phys Condens Matter 25:105801–105808CrossRefGoogle Scholar
  6. 6.
    Patel M, Swain AC, Cunningham JL, Maxwell RS, Chinn SC (2006) The stability of poly(m-carborane-siloxane) elastomers exposed to heat and gamma radiation. Polym Degrad Stab 91:548–554CrossRefGoogle Scholar
  7. 7.
    Perkinsa FK, Rosenberg RA, Lee S, Dowben PA (1991) Synchrotron-radiation-induced deposition of boron and boron carbide films from boranes and carboranes: decaborane. J Appl Phys 69:4103–4109CrossRefGoogle Scholar
  8. 8.
    McIlroy DN, Zhang J, Dowben PA, Heskett D (1996) Band gaps of doped and undoped films of molecular icosahedra. Mater Sci Eng A 217(218):64–68CrossRefGoogle Scholar
  9. 9.
    Caruso AN, Bernard L, Xu B, Dowben PA (2003) Comparison of adsorbed orthocarborane and metacarborane on metal surfaces. J Phys Chem B 107:9620–9623CrossRefGoogle Scholar
  10. 10.
    Januszko A, Glab KL, Kaszynski P, Patel K, Lewis RA, Mehl GH, Wand MD (2006) The effect of carborane, bicyclo[2.2.2]octane and benzene on mesogenic and dielectric properties of laterally fluorinated three-ring mesogens. J Mater Chem 16:3183–3192CrossRefGoogle Scholar
  11. 11.
    Schwartz JJ, Mendoza AM, Wattanatorn N, Zhao Y, Nguyen VT, Spokoyny AM, Mirkin CA, Baše T, Weiss PS (2016) Surface dipole control of liquid crystal alignment. J Am Chem Soc 138:5957–5967CrossRefGoogle Scholar
  12. 12.
    Grzelczak MP, Danks SP, Klipp RC, Belic D, Zaulet A, Kunstmann-Olsen C, Bradley DF, Tsukuda T, Viñas C, Teixidor F, Abramson JJ, Brust M (2017) Ion transport across biological membranes by carborane-capped gold nanoparticles. ACS Nano 11:12492–12499CrossRefGoogle Scholar
  13. 13.
    Huang R, Liu K, Liu H, Wang G, Liu T, Miao R, Peng H, Fang Y (2018) Film-based fluorescent sensor for monitoring ethanol–water-mixture composition via vapor sampling. Anal Chem 90:14088–14093CrossRefGoogle Scholar
  14. 14.
    Ni H, Qiu Z, Xie Z (2017) Photoarylation of iodocarboranes with unactivated (hetero)arenes: facile synthesis of 1,2-[(hetero)aryl]n-o-carboranes (n = 1,2) and o-carborane-fused cyclics. Angew Chem Int Ed 56:712–716CrossRefGoogle Scholar
  15. 15.
    Otsuka M, Takita R, Kanazawa T, Miyamoto K, Muranaka A, Uchiyama M (2015) Conjugation between σ- and π-aromaticity in 1-C-arylated monocarba-closo-dodecaborate anions. J Am Chem Soc 137:15082–15085CrossRefGoogle Scholar
  16. 16.
    Baše T, Bastl Z, Plzák Z, Grygar T, Plešek J, Carr MJ, Malina V, Šubrt J, Boháček J, Večerníková E, Kříž O (2005) Carboranethiol-modified gold surfaces. A study and comparison of modified cluster and flat surfaces. Langmuir 21:7776–7785CrossRefGoogle Scholar
  17. 17.
    Thomas JC, Boldog I, Auluck HS, Bereciartua PJ, Dušek M, Macháček J, Bastl Z, Weiss PS, Baše T (2015) Self-assembled p-carborane analogue of p-mercaptobenzoic acid on Au{111}. Chem Mater 27:5425–5435CrossRefGoogle Scholar
  18. 18.
    Ito M, Wei TX, Chen PL, Akiyama H, Matsumoto M, Tamadab K, Yamamoto Y (2005) A novel method for creation of free volume in a one-component self-assembled monolayer: dramatic size effect of para-carborane. J Mater Chem 15:478–483CrossRefGoogle Scholar
  19. 19.
    Kang J, Rowntree PA (2007) Gold film surface preparation for self-assembled monolayer studies. Langmuir 23:509–516CrossRefGoogle Scholar
  20. 20.
    Hohman JN, Zhang P, Morin EI, Han P, Kim M, Kurland AR, McClanahan PD, Balema VP, Weiss PS (2009) Self-assembly of carboranethiol isomers on Au{111}: intermolecular interactions determined by molecular dipole orientations. ACS Nano 3:527–536CrossRefGoogle Scholar
  21. 21.
    Scholz F, Nothofer HG, Wessels JM, Nelles G, Wrochem FV, Roy S, Chen X, Michl J (2011) Permethylated 12-vertex p-carborane self-assembled monolayers. J Phys Chem C 115:22998–23007CrossRefGoogle Scholar
  22. 22.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  23. 23.
    Balaz S, Caruso AN, Platt NP, Dimov DI, Boag NM, Brand JI, Losovyj YB, Dowben PA (2007) The influence of the molecular dipole on the electronic structure of isomeric icosahedral dicarbadodecaborane and phosphacarbadodecaborane molecular films. J Phys Chem B 111:7009–7016CrossRefGoogle Scholar
  24. 24.
    Wrochem FV, Scholz F, Gao D, Nothofer HG, Yasuda A, Wessels JM, Roy S, Chen X, Michl J (2010) High-band-gap polycrystalline monolayers of a 12-vertex p-carborane on Au(111). J Phys Chem Lett 1:3471–3477CrossRefGoogle Scholar
  25. 25.
    Plešek J, Heřmánek S (1981) Syntheses and properties of substituted icosahedral carborane thiols. Collect Czech Chem Commun 46:687–692CrossRefGoogle Scholar
  26. 26.
    Barth JV, Brune H, Ertl G, Behm RJ (1990) Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys Rev B 42:9307–9318CrossRefGoogle Scholar
  27. 27.
    Narasimhan S, Vanderbilt D (1992) Elastic stress domains and the herringbone reconstruction on Au(111). Phys Rev Lett 69:1564–1567CrossRefGoogle Scholar
  28. 28.
    Kevan SD, Gaylord RH (1987) High-resolution photoemission study of the electronic structure of the noble-metal (111) surfaces. Phys Rev B 36:5809–5818CrossRefGoogle Scholar
  29. 29.
    Avouris P, Lyo IW, Walkup RE, Hasegawa Y (1994) Real space imaging of electron scattering phenomena at metal surfaces. J Vac Soc Technol B 12:1447–1455CrossRefGoogle Scholar
  30. 30.
    http://www.gaussian.com/. Accessed 9 Apr 2019
  31. 31.
    https://www.vasp.at/. Accessed 9 Apr 2019
  32. 32.
    Shirai Y, Morin JF, Sasaki T, Guerreroa JM, Tour JM (2006) Recent progress on nanovehicles. Chem Soc Rev 35:1043–1055CrossRefGoogle Scholar
  33. 33.
    Ohara M, Kim Y, Kawai M (2006) Tunneling-electron-induced hopping of methylthiolate on Cu(111). Jpn J Appl Phys 45:2022–2025CrossRefGoogle Scholar
  34. 34.
    Momose T, Shudo K, Raebiger H, Ohno S, Kitajima T, Uchiyama M, Suzuki T, Tanaka M (2014) Molecular motion induced by multivibronic excitation on semiconductor surface. J Phys Chem C 118:1554–1559CrossRefGoogle Scholar
  35. 35.
    Aoki M, Kamada T, Sasaki K, Masuda S, Morikawa Y (2012) Chemisorption-induced gap states at organic–metal interfaces: benzenethiol and benzeneselenol on metal surfaces. Phys Chem Chem Phys 14:4101–4108CrossRefGoogle Scholar
  36. 36.
    Britton AJ, Rienzo A, O’Shea JN, Schulte K (2010) Charge transfer between the Au(111) surface and adsorbed C60: resonant photoemission and new core-hole decay channels. J Chem Phys 133:094705CrossRefGoogle Scholar
  37. 37.
    Yun DJ, Shin WH, Bulliard X, Park JH, Kim S, Chung JG, Kim Y, Heo S, Kim SH (2016) Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis. Nanotechnology 27:345704–345714CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsYokohama National UniversityYokohamaJapan
  2. 2.Osaka Institute of TechnologyOsakaJapan
  3. 3.Cluster of Pioneering Research (CPR), Advanced Elements Chemistry LaboratoryRIKENWako-shiJapan

Personalised recommendations