Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9426–9441 | Cite as

Electrochemically active dispersed tungsten oxides obtained from tungsten hexacarbonyl in supercritical carbon dioxide

  • Alexander Yu. Nikolaev
  • Alexander A. Khokhlov
  • Eduard E. Levin
  • Sergey S. Abramchuk
  • Elena P. Kharitonova
  • Marat O. GallyamovEmail author
Chemical routes to materials
  • 48 Downloads

Abstract

Electrochemically active nanocrystalline tungsten oxide was synthesized in supercritical carbon dioxide from tungsten hexacarbonyl at 150 °C and 400 bar in the presence of oxygen (partial pressure of 15 bar). The supercritical fluid is a solvent for the precursor (i.e., this is a sc solvothermal synthesis route), whereas the admixed gaseous oxygen serves as an oxidizer, promoting thermal decomposition of the precursor. During the substrate-free synthesis, 200–500 nm aggregates are formed. They consist of smaller grains having the size of about 100 nm. Therefore, a certain structural hierarchy is detected. The electrochemical activity of the as-synthesized particulate material is pronouncedly increasing during both potential cycling and exposure in an aqueous aerated electrolyte. After such a hydration/oxidation process, the electrochemical response of the material shows rather fast and reversible recharging of the entire tungsten-containing phase. This is an indication of facilitated proton transport in bulk of the tungsten oxide phase synthesized in the supercritical carbon dioxide with subsequent hydration/oxidation. Quite differently, the material synthesized at the same temperature only in compressed oxygen (partial pressure of 15 bar) without any presence of supercritical carbon dioxide is highly crystalline one. It does not demonstrate any significant electrochemical rechargeability; neither is the response improving with hydration/oxidation.

Notes

Acknowledgements

The authors are grateful to Yu.A. Velikodny for measuring XRD patterns. The reported study was mainly funded by RFBR according to the research Projects Nos. 13-03-01096_a and 18-29-06036_mk. Research contributions of A.A.Kh. and S.S.A. as reported in this publication were also supported by Centre for Electrochemical Energy of Skolkovo Institute of Science and Technology. A.Yu.N. and M.O.G. also acknowledge the support from Russian Academy of Sciences within the Basic Research Program of the Division of Chemistry and Materials Sciences (Program No. OKh-3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Kirss RU, Meda L (1998) Chemical vapor deposition of tungsten oxide. Appl Organomet Chem 12:155–160.  https://doi.org/10.1002/(sici)1099-0739(199803)12:3%3c155:aid-aoc688%3e3.0.co;2-z Google Scholar
  2. 2.
    Bange K (1999) Colouration of tungsten oxide films: a model for optically active coatings. Sol Energy Mater Sol Cells 58(1):1–131.  https://doi.org/10.1016/s0927-0248(98)00196-2 Google Scholar
  3. 3.
    Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262.  https://doi.org/10.1016/S0927-0248(99)00088-4 Google Scholar
  4. 4.
    Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598.  https://doi.org/10.1016/j.solmat.2007.04.031 Google Scholar
  5. 5.
    Serp Ph, Kalck Ph, Feurer R (2002) Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem Rev 102:3085–3128.  https://doi.org/10.1021/cr9903508 Google Scholar
  6. 6.
    Hurd DT, McEntee HR, Brisbin PH (1952) Tungsten carbide by pyrolysis of tungsten hexacarbonyl. Ind Eng Chem 44(10):2432–2435.  https://doi.org/10.1021/ie50514a042 Google Scholar
  7. 7.
    Kaplan LH, d’Heurle FM (1970) The deposition of molybdenum and tungsten films from vapor decomposition of carbonyls. J Electrochem Soc 117(5):693–700.  https://doi.org/10.1149/1.2407607 Google Scholar
  8. 8.
    Kudo T, Kawamura G, Okamoto H (1983) A new (W, Mo)C electrocatalyst synthesized by a carbonyl process: its activity in relation to H2, HCHO, and CH3OH electro-oxidation. J Electrochem Soc 130(7):1491–1497.  https://doi.org/10.1149/1.2120017 Google Scholar
  9. 9.
    Kudo T, Ishikawa A, Kawamura G, Okamoto H (1985) A new (W, Mo)C electrocatalyst synthesized by a carbonyl process: activity enhancement resulting from water vapor treatment in the synthesizing process. J Electrochem Soc 132(8):1814–1819.  https://doi.org/10.1149/1.2114223 Google Scholar
  10. 10.
    Davazoglou D, Donnadieu A (1987) Structure and optical properties of WO3 thin films prepared by chemical vapour deposition. Thin Solid Films 147:131–142.  https://doi.org/10.1016/0040-6090(87)90279-3 Google Scholar
  11. 11.
    Zaera F (1992) Tungsten hexacarbonyl thermal decomposition on Ni(100) surfaces. J Phys Chem 96(11):4609–4615.  https://doi.org/10.1021/j100190a086 Google Scholar
  12. 12.
    Davazoglou D, Donnadieu A (1992) Study of optical dispersion parameters of WO3 polycrystalline thin films. J Appl Phys 72:1502–1511.  https://doi.org/10.1063/1.351717 Google Scholar
  13. 13.
    Maruyama T, Arai S (1994) Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition. J Electrochem Soc 141(4):1021–1024.  https://doi.org/10.1149/1.2054834 Google Scholar
  14. 14.
    Gogova DS, Gesheva KA, Stoyanov GI (1994) Optimization of the post-deposition oxidation of CVD-W films for preparation of WO3 as an electrochromic material. Proc SPIE 2255:332–339.  https://doi.org/10.1117/12.185375 Google Scholar
  15. 15.
    Davazoglou D, Donnadieu A (1994) Optical oscillator strengths and quantum mechanics matrix elements of WO3 polycrystalline thin films. J Non Cryst Solids 169:64–71.  https://doi.org/10.1016/0022-3093(94)90225-9 Google Scholar
  16. 16.
    Xu M, Zaera F (1996) Mechanistic studies of the thermal decomposition of metal carbonyls on Ni(100) surfaces in connection with chemical vapor deposition processes. J Vac Sci Technol A 14(2):415–424.  https://doi.org/10.1116/1.580099 Google Scholar
  17. 17.
    Davazoglou D, Moutsakis A, Valamontes V, Psycharis V, Tsamakis D (1997) Tungsten oxide thin films chemically vapor deposited at low pressure by W(CO)6 pyrolysis. J Electrochem Soc 144(2):595–599.  https://doi.org/10.1149/1.1837453 Google Scholar
  18. 18.
    Davazoglou D, Georgouleas K (1998) low pressure chemically vapor deposited WO3 thin films for integrated gas sensor applications. J Electrochem Soc 145(4):1346–1350.  https://doi.org/10.1149/1.1838463 Google Scholar
  19. 19.
    Lai KK, Lamb HH (2000) Tungsten chemical vapor deposition using tungsten hexacarbonyl: microstructure of as-deposited and annealed films. Thin Solid Films 370:114–121.  https://doi.org/10.1016/S0040-6090(00)00943-3 Google Scholar
  20. 20.
    Alvarez-Merino MA, Carrasco-Marín E, Fierro JLG, Moreno-Castilla C (2000) Tungsten catalysts supported on activated carbon. I. Preparation and characterization after their heat treatments in inert atmosphere. J Catal 192:363–373.  https://doi.org/10.1006/jcat.2000.2842 Google Scholar
  21. 21.
    Moreno-Castilla C, Alvarez-Merino MA, Carrasco-Marín F, Fierro JLG (2001) Tungsten and tungsten carbide supported on activated carbon: surface structures and performance for ethylene hydrogenation. Langmuir 17(5):1752–1756.  https://doi.org/10.1021/la001367k Google Scholar
  22. 22.
    Moreno-Castilla C, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F, Fierro JLG (2003) Influence of carbon–oxygen surface complexes on the surface acidity of tungsten oxide catalysts supported on activated carbons. Carbon 41:1157–1167.  https://doi.org/10.1016/S0008-6223(03)00023-X Google Scholar
  23. 23.
    Pérez-Cadenas AF, Moreno-Castilla C, Maldonado-Hódar FJ, Fierro JLG (2003) Tungsten oxide catalysts supported on activated carbons: effect of tungsten precursor and pretreatment on dispersion, distribution, and surface acidity of catalysts. J Catal 217:30–37.  https://doi.org/10.1016/S0021-9517(03)00059-9 Google Scholar
  24. 24.
    Kim JC, Kim BK (2004) Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process. Scripta Mater 50:969–972.  https://doi.org/10.1016/j.scriptamat.2004.01.015 Google Scholar
  25. 25.
    Park B, Yong K (2005) Synthesis and characterization of tungsten oxide nanorods. Surf Rev Lett 12:745–748.  https://doi.org/10.1142/S0218625X0500761X Google Scholar
  26. 26.
    Li Y, J-p Li, Ch-ch Jia, X-q Liu (2012) Fabrication of tungsten films by metallorganic chemical vapor deposition. Int J Min Met Mater 19(12):1149–1153.  https://doi.org/10.1007/s12613-012-0684-1 Google Scholar
  27. 27.
    Zhang X, Liu W, Yu L, Li Y, Guo Sh (2013) Observation of the structure of tungsten films prepared by MOCVD. Plasma Sci Technol 15(9):955–960.  https://doi.org/10.1088/1009-0630/15/9/23 Google Scholar
  28. 28.
    Ling M, Blackman C (2015) Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD). Phys Stat Solidi C 12(7):869–877.  https://doi.org/10.1002/pssc.201510047 Google Scholar
  29. 29.
    Kadomtseva AV, Ob’’edkov AM, Semenov MN, Kaverin BS, Gusev SA (2016) Synthesis of catalyst based on sol microspheres coated with pyrolytic tungsten and study of its influence on production of metallic germanium. Russ J Appl Chem 89(11):1797–1805.  https://doi.org/10.1134/S1070427216110100 Google Scholar
  30. 30.
    Vorotyntsev AV, Vorotyntsev VM, Petukhov AN, Kadomtseva AV, Kopersak IYu, Trubyanov MM, Ob’’edkov AM, Pikulin IV, Drozhzhin VS, Aushev AA (2016) Kinetics of germanium tetrachloride reduction with hydrogen in the presence of pyrolytic tungsten. Inorg Mater 52(9):919–924.  https://doi.org/10.1134/S002016851609017X Google Scholar
  31. 31.
    Ashraf S, Blackman CS, Palgrave RG, Naisbitt SC, Parkin IP (2007) Aerosol assisted chemical vapour deposition of WO3 thin films from tungsten hexacarbonyl and their gas sensing properties. J Mater Chem 17:3708–3713.  https://doi.org/10.1039/B617982G Google Scholar
  32. 32.
    Xiong L, He T (2006) Synthesis and characterization of carbon supported PtW catalysts from carbonyl complexes for oxygen electroreduction. Electrochem Commun 8:1671–1676.  https://doi.org/10.1016/j.elecom.2006.07.044 Google Scholar
  33. 33.
    Grabowska E, Sobczak JW, Gazda M, Zaleska A (2012) Surface properties and visible light activity of W–TiO2 photocatalysts prepared by surface impregnation and sol–gel method. Appl Catal B Environ 117–118:351–359.  https://doi.org/10.1016/j.apcatb.2012.02.003 Google Scholar
  34. 34.
    Gesheva K, Gogova D (1993) CVD—technology of transition metal oxides and their impact on solar energy utilization. J Phys IV 03(C3):475–483.  https://doi.org/10.1051/jp4:1993366 Google Scholar
  35. 35.
    Gogova D, Gesheva K, Kakanakova-Georgieva A, Surtchev M (2000) Investigation of the structure of tungsten oxide films obtained by chemical vapor deposition. Eur Phys J AP 11:167–174.  https://doi.org/10.1051/epjap:2000159 Google Scholar
  36. 36.
    Tanner RE, Szekeres A, Gogova D, Gesheva K (2003) Study of the surface roughness of CVD-tungsten oxide thin films. Appl Surf Sci 218:162–168.  https://doi.org/10.1016/S0169-4332(03)00575-0 Google Scholar
  37. 37.
    Dimitrova Z, Gogova D (2005) On the structure, stress and optical properties of CVD tungsten oxide films. Mater Res Bull 40:333–340.  https://doi.org/10.1016/j.materresbull.2004.10.017 Google Scholar
  38. 38.
    Gogova D, Gesheva K, Szekeres A, Sendova-Vassileva M (1999) Structural and optical properties of CVD thin tungsten oxide films. Phys Stat Sol A 176:969–984.  https://doi.org/10.1002/(SICI)1521-396X(199912)176:2%3c969:AID-PSSA969%3e3.0.CO;2-9 Google Scholar
  39. 39.
    Jackson DHK, Dunn BA, Guan Y, Kuech ThF (2014) Tungsten hexacarbonyl and hydrogen peroxide as precursors for the growth of tungsten oxide thin films on titania nanoparticles. AIChE J 60(4):1278–1286.  https://doi.org/10.1002/aic.14397 Google Scholar
  40. 40.
    Malm J, Sajavaara T, Karppinen M (2012) Atomic layer deposition of WO3 thin films using W(CO)6 and O3 precursors. Chem Vap Depos 18:245–248.  https://doi.org/10.1002/cvde.201206986 Google Scholar
  41. 41.
    Hor TSA, Chan HSO, Leong Y-Ph, Tan M-M (1989) Substituted metal carbonyls. X. Thermogravimetric and quantitative studies of the oxidative decarbonylation of tungsten hexacarbonyl. J Organomet Chem 373:221–228.  https://doi.org/10.1016/0022-328X(89)85047-8 Google Scholar
  42. 42.
    Vogt GJ (1982) Low-temperature chemical vapor deposition of tungsten from tungsten hexacarbonyl. J Vac Sci Technol 20:1336–1340.  https://doi.org/10.1116/1.571599 Google Scholar
  43. 43.
    Haigh J, Burkhardt G, Blake K (1995) Thermal decomposition of tungsten hexacarbonyl in hydrogen, the production of thin tungsten-rich layers, and their modification by plasma treatment. J Crystal Growth 155:266–271.  https://doi.org/10.1016/0022-0248(95)00234-0 Google Scholar
  44. 44.
    Suvanto M, Räty J, Pakkanen TA (1999) Carbonyl-precursor-based W/Al2O3 and CoW/Al2O3 catalysts: characterization by temperature-programmed methods. Catal Lett 62:21–27.  https://doi.org/10.1023/A:1019030518532 Google Scholar
  45. 45.
    Ren X-N, Zhou H, Ge Ch-Ch, Liu X-Q, Li Y, Zhou W-P, Liu W-L, Zh-j Zhou, Zhang X-G, Xia M (2014) Proposal and research on using tungsten carbonyl-CVD process for making W-coating PFMs and W-tubes. J Nucl Mater 455:582–585.  https://doi.org/10.1016/j.jnucmat.2014.08.049 Google Scholar
  46. 46.
    Fritz OG (1964) Conducting film formed by electron bombardment of tungsten hexacarbonyl vapor in vacuum. J Appl Phys 35:2272.  https://doi.org/10.1063/1.1702841 Google Scholar
  47. 47.
    Glezent MM, Jonah ChD (1991) Pulse RADIOLYSIS of Cr(CO)6 and W(CO)6 in alkane solution. J Phys Chem 95:4736–4741.  https://doi.org/10.1021/j100165a027 Google Scholar
  48. 48.
    Hoyle PC, Ogasawara M, Cleaver JRA, Ahmed H (1993) Electrical resistance of electron beam induced deposits from tungsten hexacarbonyl. Appl Phys Lett 62:3043–3045.  https://doi.org/10.1063/1.109133 Google Scholar
  49. 49.
    Rack PD, Randolph S, Deng Y, Fowlkes J, Choi Y, Joy DC (2003) Nanoscale electron-beam-stimulated processing. Appl Phys Lett 82:2326–2328.  https://doi.org/10.1063/1.1565696 Google Scholar
  50. 50.
    Liu P, Arai F, Fukuda T (2006) Controlled nanowire growth with a nanorobotic manipulator. Nanotechnology 17:3023–3027.  https://doi.org/10.1088/0957-4484/17/12/035 Google Scholar
  51. 51.
    Porrati F, Sachser R, Huth M (2009) The transient electrical conductivity of W-based electron-beam-induced deposits during growth, irradiation and exposure to air. Nanotechnology 20:195301.  https://doi.org/10.1088/0957-4484/20/19/195301 Google Scholar
  52. 52.
    Mulders JJL, Belova LM, Riazanova A (2011) Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22:055302.  https://doi.org/10.1088/0957-4484/22/5/055302 Google Scholar
  53. 53.
    Roberts NA, Gonzalez CM, Fowlkes JD, Rack PhD (2013) Enhanced by-product desorption via laser assisted electron beam induced deposition of W(CO)6 with improved conductivity and resolution. Nanotechnology 24:415301.  https://doi.org/10.1088/0957-4484/24/41/415301 Google Scholar
  54. 54.
    Neustetter M, Al Maalouf EJ, Limão-Vieira P, Denifl S (2016) Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization. J Chem Phys 145:054301.  https://doi.org/10.1063/1.4959278 Google Scholar
  55. 55.
    Stewart DK, Stern LA, Morgan JC (1989) Focused- ion-beam induced deposition of metal for microcircuit modification. Proc SPIE 1089:18–25.  https://doi.org/10.1117/12.968510 Google Scholar
  56. 56.
    Takahashi Y, Madokoro Y, Ishitani T (1991) Growth of tungsten film by focused ion beam induced deposition. Jpn J Appl Phys 30:L518–L520.  https://doi.org/10.1143/JJAP.30.L518 Google Scholar
  57. 57.
    Koh Y-B, Gamo K (1992) A study on the characteristics of low-energy ion-beam-assisted deposition of tungsten. Jpn J Appl Phys 31:1228–1231.  https://doi.org/10.1143/JJAP.31.1228 Google Scholar
  58. 58.
    Ishida M, Fujita J, Ichihashi T, Ochiai Y, Kaito T, Matsui S (2003) Focused ion beam-induced fabrication of tungsten structures. J Vac Sci Technol B 21(6):2728–2731.  https://doi.org/10.1116/1.1627806 Google Scholar
  59. 59.
    Prestigiacomo M, Roussel L, Houël A, Sudraud P, Bedu F, Tonneau D, Safarov V, Dallaporta H (2004) Studies of structures elaborated by focused ion beam induced deposition. Microelectron Eng 76:175–181.  https://doi.org/10.1016/j.mee.2004.07.047 Google Scholar
  60. 60.
    Luxmoore IJ, Ross IM, Cullis AG, Fry PW, Orr J, Buckle PD, Jefferson JH (2007) Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515:6791–6797.  https://doi.org/10.1016/j.tsf.2007.02.029 Google Scholar
  61. 61.
    Domenichini B, Prunier J, Petukov M, Li Z, Møller PJ, Bourgeois S (2008) From tungsten hexacarbonyl adsorption on TiO2(110) surface to supported tungsten oxide phases. J Electron Spectrosc Relat Phenom 163:19–27.  https://doi.org/10.1016/j.elspec.2008.02.002 Google Scholar
  62. 62.
    Kohama K, Iijima T, Hayashida M, Ogawa Sh (2013) Tungsten-based pillar deposition by helium ion microscope and beam-induced substrate damage. J Vac Sci Technol B 31(3):031802.  https://doi.org/10.1116/1.4800983 Google Scholar
  63. 63.
    Sim J, Choi J, Kim J (2014) Humidity sensing characteristics of focused ion beam-induced suspended single tungsten nanowire. Sens Actuators B 194:38–44.  https://doi.org/10.1016/j.snb.2013.12.073 Google Scholar
  64. 64.
    Wnorowski K, Stano M, Barszczewska W, Jówko A, Matejčík Š (2012) Electron ionization of W(CO)6: appearance energies. Int J Mass Spectrom 314:42–48.  https://doi.org/10.1016/j.ijms.2012.02.002 Google Scholar
  65. 65.
    Wnorowski K, Stano M, Matias C, Denifl S, Barszczewska W, Matejčík Š (2012) Low-energy electron interactions with tungsten hexacarbonyl—W(CO)6. Rapid Commun Mass Spectrom 26:2093–2098.  https://doi.org/10.1002/rcm.6324 Google Scholar
  66. 66.
    Rosenberg SG, Barclay M, Fairbrother DH (2013) Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Phys Chem Chem Phys 15:4002–4015.  https://doi.org/10.1039/C3CP43902J Google Scholar
  67. 67.
    Thorman RM, Kumar RTP, Fairbrother DH, Ingólfsson O (2015) The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors. Beilstein J Nanotechnol 6:1904–1926.  https://doi.org/10.3762/bjnano.6.194 Google Scholar
  68. 68.
    Henry MR, Kim S, Fedorov AG (2016) High purity tungsten nanostructures via focused electron beam induced deposition with carrier gas assisted supersonic jet delivery of organometallic precursors. J Phys Chem C 120:10584–10590.  https://doi.org/10.1021/acs.jpcc.5b11488 Google Scholar
  69. 69.
    Suhr H, Schmid R, Stürmer W (1992) Plasma reaction of group vi metal carbonyls. Plasma Chem Plasma Process 12(2):147–159.  https://doi.org/10.1007/BF01447443 Google Scholar
  70. 70.
    Liang Ch, Ding L, Wang A, Ma Zh, Qiu J, Zhang T (2009) Microwave-assisted preparation and hydrazine decomposition properties of nanostructured tungsten carbides on carbon nanotubes. Ind Eng Chem Res 48:3244–3248.  https://doi.org/10.1021/ie801591x Google Scholar
  71. 71.
    Shulga YuM, Martynenko VM, Berestenko VI, Domashnev IA, Kurkin EN, Torbov VI (2011) On the factors determining the pyrophoric stability of tungsten nanopowder obtained by plasma chemical pyrolysis of W(CO)6. Tech Phys 56(10):1531–1534.  https://doi.org/10.1134/s1063784211100197 Google Scholar
  72. 72.
    Lin Y-S, Tsai T-H, Hung Sh-Ch, Tien Sh-W (2013) Enhanced lithium electrochromism of atmospheric pressure plasma jet-synthesized tungsten/molybdenum oxide films for flexible electrochromic devices. J Solid State Electrochem 17:1077–1088.  https://doi.org/10.1007/s10008-012-1969-z Google Scholar
  73. 73.
    Lin Y-S, Tsai T-H, Lu W-H, Shie B-S (2014) Lithium electrochromic properties of atmospheric pressure plasma jet-synthesized tungsten/molybdenum-mixed oxide films for flexible electrochromic device. Ionics 20:1163–1174.  https://doi.org/10.1007/s11581-014-1072-9 Google Scholar
  74. 74.
    Houle FA, Singmaster KA (1992) visible laser-induced nucleation and growth of Cr, Mo, and W films from the hexacarbonyls. reactivity of CO on film surfaces. J Phys Chem 96:10425–10439.  https://doi.org/10.1021/j100204a057 Google Scholar
  75. 75.
    Singmaster KA, Houle FA (1993) Laser-assisted chemical vapor deposition from the metal hexacarbonyls. Chapter 21/laser chemistry of organometallics; Chaiken, J; ACS Symposium Series; vol 530, American Chemical Society: Washington, DC, Ch 21:292–301.  https://doi.org/10.1021/bk-1993-0530.ch021
  76. 76.
    Maruyama T, Kanagawa T (1994) Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition. J Electrochem Soc 141(9):2435–2438.  https://doi.org/10.1149/1.2054834 Google Scholar
  77. 77.
    Tamenori Y, Inaoka K, Koyano I (1996) Dissociative photoionization of hexacarbonyl tungsten in the range 30–120 eV. J Electron Spectrosc Relat Phenom 79:503–506.  https://doi.org/10.1016/0368-2048(96)02905-2 Google Scholar
  78. 78.
    Qi F, Yang Sh, Sheng L, Gao H, Zhang Y, Yu Sh (1997) Vacuum ultraviolet photoionization and dissociative photoionization of W(CO)6. J Chem Phys 107(24):10391–10398.  https://doi.org/10.1063/1.474202 Google Scholar
  79. 79.
    Dubtsov SN, Levykint AI, Sabelfeldt KK (2000) Kinetics of aerosol formation during tungsten hexacarbonyl photolysis. J Aerosol Sci 31(5):509–518.  https://doi.org/10.1016/S0021-8502(99)00539-X Google Scholar
  80. 80.
    Bruyère S, Domenichini B, Potin V, Li Z, Bourgeois S (2009) WOx phase growth on SiO2/Si by decomposition of tungsten hexacarbonyl: influence of potassium on supported tungsten oxide phases. Surf Sci 603:3041–3048.  https://doi.org/10.1016/j.susc.2009.08.010 Google Scholar
  81. 81.
    Gafney HD, Zaitsev V, Xu Sh, Look EG (2015) Nature and distribution of tungsten oxides in porous Vycor glass. J Non Cryst Solids 409:1–7.  https://doi.org/10.1016/j.jnoncrysol.2014.11.005 Google Scholar
  82. 82.
    Krisyuk VV, Koretskaya TP, Turgambaeva AE, Trubin SV, Korolkov IV, Debieu O, Duguet Th, Igumenov IK, Vahlas C (2015) Thermal decomposition of tungsten hexacarbonyl: CVD of W-containing films under Pd codeposition and VUV assistance. Phys Stat Solidi C 12(7):1047–1052.  https://doi.org/10.1002/pssc.201510020 Google Scholar
  83. 83.
    Jeong K, Lee J, Byun I, M-j Seong, Park J, H-s Nama, Lee J (2017) Pulsed laser chemical vapor deposition of a mixture of W, WO2, and WO3, from W(CO)6 at atmospheric pressure. Thin Solid Films 626:145–153.  https://doi.org/10.1016/j.tsf.2017.02.043 Google Scholar
  84. 84.
    Magnusson MH, Deppert K, Malm J-O (2000) Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl. J Mater Res 15(7):1564–1569.  https://doi.org/10.1557/JMR.2000.0224 Google Scholar
  85. 85.
    Michalow KA, Vital A, Heel A, Graule T, Reifler FA, Ritter A, Zakrzewska K, Rekas M (2008) Photocatalytic activity of W-doped TiO2 nanopowders. J Adv Oxid Technol 11:56–64.  https://doi.org/10.1515/jaots-2008-0107 Google Scholar
  86. 86.
    Michalow KA, Heel A, Vital A, Amberg M, Fortunato G, Kowalski K, Graule TJ, Rekas M (2009) Effect of thermal treatment on the photocatalytic activity in visible light of TiO2-W flame spray synthesised nanopowders. Top Catal 52:1051–1059.  https://doi.org/10.1007/s11244-009-9256-7 Google Scholar
  87. 87.
    Pokhrel S, Birkenstock J, Schowalter M, Rosenauer A, Mädler L (2010) Growth of ultrafine single crystalline wo3 nanoparticles using flame spray pyrolysis. Cryst Growth Des 10:632–639.  https://doi.org/10.1021/cg9010423 Google Scholar
  88. 88.
    Nishiguchi K, Utani K, Gunther D, Ohata M (2014) Gas to particle conversion-gas exchange technique for direct analysis of metal carbonyl gas by inductively coupled plasma mass spectrometry. Anal Chem 86:10025–10029.  https://doi.org/10.1021/ac502168h Google Scholar
  89. 89.
    Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Kröcher O, Ferri D (2015) Flame-Made WO3/CeOx–TiO2 catalysts for selective catalytic reduction of NOx by NH3. ACS Catal 5:5657–5672.  https://doi.org/10.1021/acscatal.5b01580 Google Scholar
  90. 90.
    Rademacher N, Bayarjargal L, Friedrich A, Morgenroth W, Avalos-Borja M, Vogel SC, Proffen Th, Winkler B (2011) Decomposition of W(CO)6 at high pressures and temperatures. J Appl Cryst 44:820–830.  https://doi.org/10.1107/S0021889811021285 Google Scholar
  91. 91.
    Garimella S, Drozd V, Durygin A, Chen J (2012) High pressure Raman and X-ray diffraction studies on the decomposition of tungsten carbonyl. J Appl Phys 111:112606.  https://doi.org/10.1063/1.4726196 Google Scholar
  92. 92.
    DeJournett TJ, Spicer JB (2013) Laser-induced, in situ, nanoparticle shell synthesis in polymer matrix nanocomposites. Phys Chem Chem Phys 15:19753–19762.  https://doi.org/10.1039/C3CP53572J Google Scholar
  93. 93.
    DeJournett TJ, Spicer JB (2014) The influence of oxygen on the microstructural, optical and photochromic properties of polymer-matrix, tungsten-oxide nanocomposite films. Sol Energy Mater Sol Cells 120:102–108.  https://doi.org/10.1016/j.solmat.2013.08.023 Google Scholar
  94. 94.
    Solorza-Feria O, Ramírez-Raya S, Rivera-Noriega R, Ordoñez-Regil E, Fernández-Valverde SM (1997) Kinetic studies of molecular oxygen reduction on W0.013Ru1.27Se thin films chemically synthesized. Thin Solid Films 311:164–170.  https://doi.org/10.1016/S0040-6090(97)00685-8 Google Scholar
  95. 95.
    Castellanos RH, Campero A, Solorza-Feria O (1998) Synthesis of W–Se–Os carbonyl electrocatalyst for oxygen reduction in 0.5 M H2SO4. Int J Hydrogen Energy 23(11):1037–1040.  https://doi.org/10.1016/s0360-3199(98)00015-9 Google Scholar
  96. 96.
    Rodríguez FJ, Sebastian PJ, Solorza O, Pérez R (1998) Mo–Ru–W chalcogenide electrodes prepared by chemical synthesis and screen printing for fuel cell applications. Int J Hydrogen Energy 23(11):1031–1035.  https://doi.org/10.1016/S0360-3199(98)00023-8 Google Scholar
  97. 97.
    Ramírez-Raya SD, Solorza-Feria O, Ordoñez-Regil E, Benaissa M, Valverde SMF (1998) Synthesis and characterization of W0.12Ru2.1Se and W0.013Ru1.27Se electrocatalysts. Nanostruct Mater 10(8):1337–1346.  https://doi.org/10.1016/s0965-9773(99)00015-x Google Scholar
  98. 98.
    Pattabi M, Castellanos RH, Sebastian PJ, Mathew X (2000) A novel electrocatalyst based on Wx(CO)n for oxygen reduction reaction. Electrochem Solid-State Lett 3(9):431–432.  https://doi.org/10.1149/1.1391169 Google Scholar
  99. 99.
    Pattabi M, Sebastian PJ, Mathew X (2001) Synthesis and characterization of Wx(CO)n electrocatalyst for application in a fuel cell electrode. J New Mater Electrochem Syst 4:7–9Google Scholar
  100. 100.
    Roquero P, Ordóñez LC, Herrera O, Ugalde O, Ramírez J (2007) Synthesis and characterization of carbon-supported platinum–molybdenum and platinum–tungsten catalysts for methanol oxidation in direct alcohol fuel cells. Int J Chem React Eng 5:A99.  https://doi.org/10.2202/1542-6580.1491 Google Scholar
  101. 101.
    Sahoo PK, Kamal SSK, Premkumar M, Kumar TJ, Sreedhar B, Singh AK, Srivastava SK, Sekhar KCh (2009) Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int J Refract Met Hard Mater 27:784–791.  https://doi.org/10.1016/j.ijrmhm.2009.01.005 Google Scholar
  102. 102.
    Meza D, Morales U, Roquero P, Salgado L (2010) Oxygen reduction on carbon supported Pt–W electrocatalysts. Int J Hydrogen Energy 35:12111–12114.  https://doi.org/10.1016/j.ijhydene.2009.07.021 Google Scholar
  103. 103.
    Sahoo PK, Kamal SSK, Premkumar M, Sreedhar B, Srivastava SK, Durai L (2011) Synthesis, characterization and densification of W–Cu nanocomposite powders. Int J Refract Met Hard Mater 29:547–554.  https://doi.org/10.1016/j.ijrmhm.2011.03.011 Google Scholar
  104. 104.
    Sahoo PK, Kamal SSK, Durai L, Sreedhar B (2011) Chemical, structural, and morphological characterization of tungsten nanoparticles synthesized by a facile chemical route. J Mater Res 26(5):652–657.  https://doi.org/10.1557/jmr.2010.76 Google Scholar
  105. 105.
    Koltypin Yu, Nikitenko SI, Gedanken A (2002) The sonochemical preparation of tungsten oxide nanoparticles. J Mater Chem 12:1107–1110.  https://doi.org/10.1039/B106036H Google Scholar
  106. 106.
    Santos LGRA, Freitas KS, Ticianelli EA (2007) Electrocatalysis of oxygen reduction and hydrogen oxidation in platinum dispersed on tungsten carbide in acid medium. J Solid State Electrochem 11:1541–1548.  https://doi.org/10.1007/s10008-007-0350-0 Google Scholar
  107. 107.
    Lees AJ, Adamson AW (1981) Reaction kinetics of the intermediate produced in the laser pulse photolysis of tungsten hexacarbonyl in fluid solution. Inorg Chem 20:4381–4384.  https://doi.org/10.1021/ic50226a067 Google Scholar
  108. 108.
    Zhu L, Saha S, Wang Y, Keszler DA, Fang Ch (2016) Monitoring photochemical reaction pathways of tungsten hexacarbonyl in solution from femtoseconds to minutes. J Phys Chem B 120:13161–13168.  https://doi.org/10.1021/acs.jpcb.6b11773 Google Scholar
  109. 109.
    Kondratenko MS, Elmanovich IV, Gallyamov MO (2017) Polymer materials for electrochemical applications: processing in supercritical fluids. J Supercrit Fluids 127:229–246.  https://doi.org/10.1016/j.supflu.2017.03.011 Google Scholar
  110. 110.
    Zefirov VV, Elmanovich IV, Levin EE, Abramchuk SS, Kharitonova EP, Khokhlov AA, Kondratenko MS, Gallyamov MO (2018) Synthesis of manganese oxide electrocatalysts in supercritical carbon dioxide. J Mater Sci 53(13):9449–9462.  https://doi.org/10.1007/s10853-018-2242-3 Google Scholar
  111. 111.
    Myers DJ, Urdahl RS, Cherayil BJ, Fayer MD (1997) Temperature dependence of vibrational lifetimes at the critical density in supercritical mixtures. J Chem Phys 107(23):9741–9748.  https://doi.org/10.1063/1.475270 Google Scholar
  112. 112.
    Myers DJ, Chen Sh, Shigeiwa M, Cherayil BJ, Fayer MD (1998) Temperature dependent vibrational lifetimes in supercritical fluids near the critical point. J Chem Phys 109(14):5971–5979.  https://doi.org/10.1063/1.477222 Google Scholar
  113. 113.
    Clarke MJ, Cooper AI, Howdle SM, Poliakoff M (2000) Photochemical reactions of organometallic complexes impregnated into polymers: speciation, isomerization, and hydrogenation of residual alkene moieties in polyethylene. J Am Chem Soc 122(11):2523–2531.  https://doi.org/10.1021/ja9919276 Google Scholar
  114. 114.
    Reichman B, Bard AJ (1979) The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W. J Electrochem Soc 126(4):583–591.  https://doi.org/10.1149/1.2129091 Google Scholar
  115. 115.
    Cheng W, Baudrin E, Dunn B, Zink JI (2001) Synthesis and electrochromic properties of mesoporous tungsten oxide. J Mater Chem 11:92–97.  https://doi.org/10.1039/B003192P Google Scholar
  116. 116.
    Yang B, Li H, Blackford M, Luca V (2006) Novel low density mesoporous WO3 films prepared by electrodeposition. Curr Appl Phys 6:436–439.  https://doi.org/10.1016/j.cap.2005.11.035 Google Scholar
  117. 117.
    Hurditch R (1975) Electrochromism in hydrated tungsten-oxide films. Electron Lett 11(7):142–144.  https://doi.org/10.1049/el:19750109 Google Scholar
  118. 118.
    Zhang X, Al Balushi ZY, Zhang F, Choudhury TH, Eichfeld SM, Alem N, Jackson ThN, Robinson JA, Redwing JM (2016) Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films. J Electron Mater 45(12):6273–6279.  https://doi.org/10.1007/s11664-016-5033-0 Google Scholar
  119. 119.
    Suvanto M, Pakkanen TA (1998) Tungsten hexacarbonyl on alumina: controlled deposition from gas phase. Appl Catal A Gen 166:105–113.  https://doi.org/10.1016/S0926-860X(97)00246-9 Google Scholar
  120. 120.
    Suvanto M, Pakkanen TA (1999) Deposition of tungsten hexacarbonyl on alumina: a diffuse reflectance infrared Fourier transform spectroscopy study. J Mol Catal A Chem 138:211–220.  https://doi.org/10.1016/S1381-1169(98)00138-1 Google Scholar
  121. 121.
    Alonso-Vante N (2006) Carbonyl tailored electrocatalysts. Fuel Cell 06(3–4):182–189.  https://doi.org/10.1002/fuce.200500245 Google Scholar
  122. 122.
  123. 123.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71.  https://doi.org/10.1107/S0021889869006558 Google Scholar
  124. 124.
    Bish DL, Howard SA (1988) Quantitative phase analysis using the Rietveld method. J Appl Cryst 21:86–91.  https://doi.org/10.1107/S0021889887009415 Google Scholar
  125. 125.
    Solovyov LA (2004) Full-profile refinement by derivative difference minimization. J Appl Cryst 37:743–749.  https://doi.org/10.1107/S0021889804015638 Google Scholar
  126. 126.
    Fabbrizzi L, Mascherini R, Paoletti P (1976) Melting of group VI transition metal hexacarbonyls: thermodynamic parameters. J Chem Soc Faraday Trans 1(72):896–900.  https://doi.org/10.1039/F19767200896 Google Scholar
  127. 127.
    Pesetskii SS, Jurkowski B, Krivoguz YM, Davydov AA, Bogdanovich SP (2007) Metal-polymer nanocomposites produced by the melt-compounding interaction of an aliphatic polyamide with metal particles. J Appl Polym Sci 105:1366–1376.  https://doi.org/10.1002/app.26240 Google Scholar
  128. 128.
    Anacleto AC, Blasco N, Pinchart A, Marot Y, Lachaud Ch (2007) Novel cyclopentadienyl based precursors for CVD of W containing films. Surf Coat Technol 201:9120–9124.  https://doi.org/10.1016/j.surfcoat.2007.04.112 Google Scholar
  129. 129.
    Lamire M, Labbe P, Goreaud M, Raveau B (1987) Refining and new analysis of W18O49 structure. Rev Chim Miner 24:369–381Google Scholar
  130. 130.
    Salje E (1977) The orthorhombic phase of WO3. Acta Cryst B33:574–577.  https://doi.org/10.1107/S0567740877004130 Google Scholar
  131. 131.
    Xu Y, Carlson S, Norrestam R (1997) Single Crystal diffraction studies of WO3 at high pressures and the structure of a high-pressure WO3 phase. J Solid State Chem 32(1):123–130.  https://doi.org/10.1006/jssc.1997.7420 Google Scholar
  132. 132.
    Bolzan AA, Kennedy BJ, Howard CJ (1995) Neutron powder diffraction study of molybdenum and tungsten dioxides. Aust J Chem 48(8):1473–1477.  https://doi.org/10.1071/CH9951473 Google Scholar
  133. 133.
    Magnéli A (1953) Structures of the ReO3-type with recurrent dislocations of atoms: `homologous series’ of molybdenum and tungsten oxides. Acta Cryst 6:495–500.  https://doi.org/10.1107/S0365110X53001381 Google Scholar
  134. 134.
    Raveendran P, Ikushima Y, Wallen SL (2005) polar attributes of supercritical carbon dioxide. Acc Chem Res 38:478–485.  https://doi.org/10.1021/ar040082m Google Scholar
  135. 135.
    Sun X-Z, George MW, Kazarian SG, Nikiforov SM, Poliakoff M (1996) Can Organometallic noble gas compounds be observed in solution at room temperature? A time-resolved infrared (TRIR) and UV spectroscopic study of the photochemistry of M(CO)6 (M) Cr, Mo, and W) in supercritical noble gas and CO2 solution. J Am Chem Soc 118:10525–10532.  https://doi.org/10.1021/ja960485k Google Scholar
  136. 136.
    Poliakoff M, George MW (1998) Intermediates in organometallic and organic chemistry: spectroscopy, polymers, hydrogenation and supercritical fluids. J Phys Org Chem 11:589–596.  https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9%3c589:AID-POC67%3e3.0.CO;2-F Google Scholar
  137. 137.
    Darensbourg DJ, Sanchez KM, Rheingold AL (1987) Insertion of carbon dioxide into metal alkoxide bonds. Synthesis and structure of tungsten tetracarbonyl carbonate. J Am Chem Soc 109:290–292.  https://doi.org/10.1021/ja00235a054 Google Scholar
  138. 138.
    Patil PR, Pawar SH, Patil PS (2000) The electrochromic properties of tungsten oxide thin films deposited by solution thermolysis. Solid State Ion 136–137:505–511.  https://doi.org/10.1016/S0167-2738(00)00478-1 Google Scholar
  139. 139.
    Kulesza PJ, Grzybowska B, Malik MA, Galkowski MT (1997) Tungsten oxides as active supports for highly dispersed platinum microcenters: electrocatalytic reactivity toward reduction of hydrogen peroxide and oxygen. J Electrochem Soc 144(6):1911–1917.  https://doi.org/10.1149/1.1837720 Google Scholar
  140. 140.
    Laurinavichute VK, Vassiliev SYu, Plyasova LM, Molina IYu, Khokhlov AA, Pugolovkin LV, Borzenko MI, Tsirlina GA (2009) Cathodic electrocrystallization and electrochromic properties of doped rechargeable oxotungstates. Electrochim Acta 54:5439–5448.  https://doi.org/10.1016/j.electacta.2009.04.035 Google Scholar
  141. 141.
    Laurinavichute VK, Vassiliev SYu, Khokhlov AA, Plyasova LM, Molina IYu, Tsirlina GA (2011) Electrodeposited oxotungstate films: towards the molecular nature of recharging processes. Electrochim Acta 56:3530–3536.  https://doi.org/10.1016/j.electacta.2010.10.077 Google Scholar
  142. 142.
    Laurinavichyute VK, Khokhlov AA, Vassiliev SYu, Vannikov AV, Tsirlina GA (2013) How to combine electrochromic and electrocatalytic applications with the low degradation rate of electrodeposited tungsten oxides. Electrochim Acta 99:102–107.  https://doi.org/10.1016/j.electacta.2013.03.095 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussian Federation
  2. 2.Faculty of Physics and Faculty of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations