Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9372–9384 | Cite as

Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method

  • Chen’ao Ma
  • Chaoshun Yin
  • Yujuan Fan
  • Xingfa Yang
  • Xingping ZhouEmail author
Chemical routes to materials
  • 41 Downloads

Abstract

One-step pyrolysis method of N-doped carbon dots (CDs) with high conversion rate and high fluorescence quantum yield (QY) has been developed to manufacture CDs on a large scale for broad applications. The QY of the blue-emitting CDs is approximately 88%, while the conversion rate is higher than 80%. Unique to other studies, some of the challenges in the preparation of CDs were addressed through a systematic study, mainly focused on reduction in solvent usage, simplification of raw materials and removal of purification process. The synthesized CDs exhibit excellent optical properties and stabilities without additional purification. Then, to understand how highly luminescing the CDs are, the optical properties of the pyrolysis products were monitored over time, temperature and raw materials ratio. Furthermore, the morphology, surface structure, formation mechanism and photoluminescence of the synthesized CDs were also investigated by the different characterization techniques. Significantly, a single near-band edge transition mode is proposed for the excitation-independent emission behaviors of the as-prepared CDs.

Notes

References

  1. 1.
    Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737CrossRefGoogle Scholar
  2. 2.
    Ying LS, Wei S, Zhiqiang G (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381CrossRefGoogle Scholar
  3. 3.
    Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381CrossRefGoogle Scholar
  4. 4.
    Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D (2016) Toward efficient orange emissive carbon nanodots through conjugated sp(2)-domain controlling and surface charges engineering. Adv Mater 28(18):3516–3521CrossRefGoogle Scholar
  5. 5.
    Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939CrossRefGoogle Scholar
  6. 6.
    Li C, Xin W, Meziani MJ, Fushen L, Haifang W, Luo PG, Yi L, Harruff BA, Monica Veca L, Davoy M (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319CrossRefGoogle Scholar
  7. 7.
    Wen XM (2012) Temperature-dependent fluorescence in carbon dots. J Phys Chem C 116(48):25552–25557CrossRefGoogle Scholar
  8. 8.
    Jae Hwan J, Doo Sung C, Fei L, Bum LK, Tae Seok S (2010) A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed Engl 49(33):5708–5711CrossRefGoogle Scholar
  9. 9.
    Mao LH, Tang WQ, Deng ZY, Liu SS, Wang CF, Chen S (2014) Facile access to white fluorescent carbon dots toward light-emitting devices. Ind Eng Chem Res 53(15):6417–6425CrossRefGoogle Scholar
  10. 10.
    Han Y, Huang H, Zhang H, Liu Y, Han X, Liu R, Li H, Kang Z (2014) Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. ACS Catal 4(3):781–787CrossRefGoogle Scholar
  11. 11.
    Sheng-Tao Y, Li C, Luo PG, Fushen L, Xin W, Haifang W, Meziani MJ, Yuanfang L, Gang Q, Ya-Ping S (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309CrossRefGoogle Scholar
  12. 12.
    Kelly B, Delehanty JB, Blanco-Canosa JB, Kimihiro S, Stewart MH, Eunkeu O, Huston AL, Glyn D, Sampat I, Ryan W (2013) Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. ACS Nano 7(5):3778–3796CrossRefGoogle Scholar
  13. 13.
    Li L, Yu B, You T (2015) Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg(II) ions. Biosens Bioelectron 74:263–269CrossRefGoogle Scholar
  14. 14.
    Zhang J, Zhao X, Xian M, Dong C, Shuang S (2018) Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183:39–47CrossRefGoogle Scholar
  15. 15.
    Xu Y, Wu M, Liu Y, Feng XZ, Yin XB, He XW, Zhang YK (2013) Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J 19(7):2276–2283CrossRefGoogle Scholar
  16. 16.
    Shaobo R, Jun Q, Shun S, Jianhua Z, Xinguo J, Qin H, Huile G (2014) A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 6(17):10040–10047CrossRefGoogle Scholar
  17. 17.
    Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71CrossRefGoogle Scholar
  18. 18.
    Wei W, Xu C, Wu L, Wang J, Ren J, Qu X (2014) Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci Rep 4:3564.  https://doi.org/10.1038/srep03564 CrossRefGoogle Scholar
  19. 19.
    Bhunia SK, Pradhan N, Jana NR (2014) Vitamin B1 derived blue and green fluorescent carbon nanoparticles for cell-imaging application. ACS Appl Mater Interfaces 6(10):7672–7679CrossRefGoogle Scholar
  20. 20.
    Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48(25):4598–4601CrossRefGoogle Scholar
  21. 21.
    Chen K, Qing W, Hu W, Lu M, Wang Y, Liu X (2019) On-off-on fluorescent carbon dots from waste tea: their properties, antioxidant and selective detection of CrO4 2−, Fe3+, ascorbic acid and l-cysteine in real samples. Spectrochim Acta A Mol Biomol Spectrosc 213:228–234CrossRefGoogle Scholar
  22. 22.
    Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron 60(60):292–298CrossRefGoogle Scholar
  23. 23.
    Li W, Susan Zhou H (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86(18):8902–8905CrossRefGoogle Scholar
  24. 24.
    Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem 122(26):4532–4536CrossRefGoogle Scholar
  25. 25.
    Kwon W, Rhee SW (2012) Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem Commun 48(43):5256–5258CrossRefGoogle Scholar
  26. 26.
    Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1):484–491CrossRefGoogle Scholar
  27. 27.
    Xiaojuan G, Qin H, Chin PM, Yan Z, Shaomin S, Chuan D, Choi MMF (2014) Red–green–blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale 6(14):8162–8170CrossRefGoogle Scholar
  28. 28.
    Haipeng L, Tao Y, Chengde M (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed Engl 46(34):6473–6475CrossRefGoogle Scholar
  29. 29.
    Vinci JC, Ferrer IM, Seedhouse SJ, Bourdon AK, Reynard JM, Foster BA, Bright FV, Colón LA (2013) Hidden properties of carbon dots revealed after HPLC fractionation. J Phys Chem Lett 4(2):239–243CrossRefGoogle Scholar
  30. 30.
    Shengliang H, Adrian T, Paul A, Ivan C (2015) Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem 54(10):2970–2974CrossRefGoogle Scholar
  31. 31.
    Ming F, Florian E, Yu W, Milowska KZ, Claas R, Rogach AL, Stolarczyk JK, Urban AS, Jochen F (2015) Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett 15(9):6030–6035CrossRefGoogle Scholar
  32. 32.
    Lu Y, Zhang L, Lin H (2014) The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots. Chem Eur J 20(15):4246–4250CrossRefGoogle Scholar
  33. 33.
    Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang XA (2015) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26(10):3104–3112CrossRefGoogle Scholar
  34. 34.
    Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48(64):7955–7957CrossRefGoogle Scholar
  35. 35.
    Park SY, Lee HU, Lee YC, Choi S, Cho DH, Kim HS, Bang S, Seo S, Lee SC, Won J (2015) Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems. Sci Rep 5:12420.  https://doi.org/10.1038/srep12420 CrossRefGoogle Scholar
  36. 36.
    Zhang F, Feng X, Zhang Y, Yan L, Yang Y, Liu X (2016) Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale 8(16):8618–8632CrossRefGoogle Scholar
  37. 37.
    Gong X, Lu W, Yang Z, Zhang Y, Hu Q, Shuang S, Dong C, Choi MMF (2015) High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging. RSC Adv 5(22):16972–16979CrossRefGoogle Scholar
  38. 38.
    Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B (2015) Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 3(23):5976–5984CrossRefGoogle Scholar
  39. 39.
    Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M (2014) Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B 2(6):698–705CrossRefGoogle Scholar
  40. 40.
    Chua CK, Sofer Z, Šimek P, Jankovský O, Klímová K, Bakardjieva S, Hrdličková KŠ, Pumera M (2015) Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9(3):2548–2555CrossRefGoogle Scholar
  41. 41.
    Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64(11):424–434CrossRefGoogle Scholar
  42. 42.
    Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95CrossRefGoogle Scholar
  43. 43.
    Minghan X, Guili H, Zhaohui L, Fengjiao H, Feng G, Yanjie S, Liying Z, Zhi Y, Yafei Z (2014) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6(17):10307–10315CrossRefGoogle Scholar
  44. 44.
    Zhang X, Shi Z, Huang X, Li X (2017) Abiotic and biotic factors influencing nanoflagellate abundance and distribution in three different seasons in PRE, South China Sea. Cont Shelf Res 143:1–8CrossRefGoogle Scholar
  45. 45.
    Kai J, Shan S, Ling Z, Yue L, Aiguo W, Congzhong C, Hengwei L (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem 127(18):5450–5453CrossRefGoogle Scholar
  46. 46.
    Hui D, Ji-Shi W, Huan-Ming X (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6(22):13817–13823CrossRefGoogle Scholar
  47. 47.
    Pramanik A, Biswas S, Tiwary CS, Sarkar R, Kumbhakar P (2018) Colloidal N-doped graphene quantum dots with tailored luminescent downshifting and detection of UVA radiation with enhanced responsivity. ACS Omega 3(11):16260–16270CrossRefGoogle Scholar
  48. 48.
    Yongqiang D, Hongchang P, Hong Bin Y, Chunxian G, Jingwei S, Yuwu C, Chang Ming L, Ting Y (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl 52(30):7800–7804CrossRefGoogle Scholar
  49. 49.
    Lei B, Zhi-Ling Z, Zhi-Quan T, Li Z, Cui L, Yi L, Baoping Q, Dai-Wen P (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23(48):5801–5806CrossRefGoogle Scholar
  50. 50.
    Woosung K, Gyeongjin L, Sungan D, Taiha J, Shi-Woo R (2014) Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 10(3):506–513CrossRefGoogle Scholar
  51. 51.
    Wang Y, Zheng J, Wang J, Yang Y, Liu X (2017) Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes. Opt Mater 73:319–329CrossRefGoogle Scholar
  52. 52.
    Niino S, Takeshita S, Iso Y, Isobe T (2016) Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots. J Lumin 180:123–131CrossRefGoogle Scholar
  53. 53.
    Khan F, Kim JH (2018) N-functionalized graphene quantum dots with ultrahigh quantum yield and large stokes shift: efficient downconverters for CIGS solar cells. ACS Photonics 5(11):4637–4643CrossRefGoogle Scholar
  54. 54.
    Bao L, Liu C, Zhang ZL, Pang DW (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27(10):1663–1667CrossRefGoogle Scholar
  55. 55.
    Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38(9):20–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Donghua UniversityShanghaiChina

Personalised recommendations