Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9718–9728 | Cite as

Nanoliposomal multi-drug delivery system with reduced toxicity and multi-drug resistance

  • Jing Yang
  • Chiyu Wen
  • Chao Pan
  • Hongshuang Guo
  • Weiqiang Zhao
  • Jiamin Zhang
  • Yingnan Zhu
  • Yumiao ZhangEmail author
  • Lei ZhangEmail author
Materials for life sciences
  • 6 Downloads

Abstract

Chemotherapy is a key medical method for cancer treatment because a large amount of patients are not suitable for surgeries, and the multi-drug resistance (MDR) and drug toxicity are still the major obstacles for clinical advancement. Here, we report the development of a nanoliposomal multi-drug delivery system with lapatinib and doxorubicin co-loaded in PEGylated nanoliposomes (Lip-LPT-DOX). Lip-LPT-DOX showed great chemosensitization of two human lung adenocarcinoma cell lines. LPT loaded in nanoliposomes could inhibit the function of ABC transporters, which could pump drugs out of cancer cells and lead to decreased intracellular drug accumulation. Lip-LPT-DOX showed a uniform size distribution and high loading efficiency with negligible drug leakage. Compared to clinical formulation, liposomal DOX (Lip-DOX), both intracellular DOX accumulation and therapeutic efficiency of Lip-LPT-DOX were significantly improved. Lip-LPT-DOX with half amount of DOX as Lip-DOX showed higher therapeutic efficiency, and it exhibited negligible toxicity to somatic cells, indicating the significantly reduced side effects. This novel nanoliposomal multi-drug delivery system provided a promising chemosensitization strategy that could likely overcome MDR and reduce the administration dose of DOX in cancer chemotherapy.

Notes

Acknowledgements

This research was supported by the National Natural Science Funds for Innovation Research Groups (21621004), National Natural Science Funds for Excellent Young Scholars (21422605), the Qingdao National Laboratory for Marine Science and Technology (QNLM2016ORP0407), Tianjin Natural Science Foundation (18JCYBJC29500).

Supplementary material

10853_2019_3573_MOESM1_ESM.docx (837 kb)
Supplementary material 1 (DOCX 836 kb)

References

  1. 1.
    Lallukka T, Millear A, Pain A, Cortinovis M, Giussani G (2017) GBD 2015 mortality and causes of death collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 (vol 388, pg 1459, 2016). Lancet 389(10064):1459–1544Google Scholar
  2. 2.
    Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6(9):594–602.  https://doi.org/10.1038/nnano.2011.112 CrossRefGoogle Scholar
  3. 3.
    Shulman LN, Mok TSK (2016) Special issue on global cancer medicine. J Clin Oncol 34(1):1–2.  https://doi.org/10.1200/jco.2015.64.6067 CrossRefGoogle Scholar
  4. 4.
    Carter D (2014) New global survey shows an increasing cancer burden. Am J Nurs 114(3):17CrossRefGoogle Scholar
  5. 5.
    Palumbo MO, Kavan P, Miller WH, Panasci L, Assouline S, Johnson N, Cohen V, Patenaude F, Pollak M, Jagoe RT, Batist G (2013) Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 4:9.  https://doi.org/10.3389/fphar.2013.00057 CrossRefGoogle Scholar
  6. 6.
    Zhou J, Yu GC, Huang FH (2017) Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 46(22):7021–7053.  https://doi.org/10.1039/c6cs00898d CrossRefGoogle Scholar
  7. 7.
    He QJ, Gao Y, Zhang LX, Zhang ZW, Gao F, Ji XF, Li YP, Shi JL (2011) A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32(30):7711–7720.  https://doi.org/10.1016/j.biomaterials.2011.06.066 CrossRefGoogle Scholar
  8. 8.
    Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035.  https://doi.org/10.1126/science.1183057 CrossRefGoogle Scholar
  9. 9.
    Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285.  https://doi.org/10.2174/092986709788803312 CrossRefGoogle Scholar
  10. 10.
    Park H, Yang J, Lee J, Haam S, Choi IH, Yoo KH (2009) Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3(10):2919–2926.  https://doi.org/10.1021/nn900215k CrossRefGoogle Scholar
  11. 11.
    Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250.  https://doi.org/10.1016/j.ejps.2014.05.021 CrossRefGoogle Scholar
  12. 12.
    Ichikawa Y, Ghanefar M, Bayeva M, Wu RX, Khechaduri A, Prasad SVN, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124(2):617–630.  https://doi.org/10.1172/jci72931 CrossRefGoogle Scholar
  13. 13.
    Assanhou AG, Li WY, Zhang L, Xue LJ, Kong LY, Sun HB, Mo R, Zhang C (2015) Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–295.  https://doi.org/10.1016/j.biomaterials.2015.09.022 CrossRefGoogle Scholar
  14. 14.
    Hu TT, Cao H, Yang CL, Zhang LJ, Jiang XH, Gao X, Yang F, He G, Song XR, Tong AP, Gao G, Gong CY, Li R, Zhang XN, Wang XC, Zheng Y (2016) LHD-modified mechanism-based liposome coencapsulation of mitoxantrone and prednisolone using novel lipid bilayer fusion for tissue-specific colocalization and synergistic antitumor effects. ACS Appl Mater Interfaces 8(10):6586–6601.  https://doi.org/10.1021/acsami.5b10598 CrossRefGoogle Scholar
  15. 15.
    Li JX, Guo CR, Feng F, Fan AL, Dai Y, Li N, Zhao D, Chen XJ, Lu Y (2016) Co-delivery of docetaxel and palmitoyl ascorbate by liposome for enhanced synergistic antitumor efficacy. Sci Rep 6:8.  https://doi.org/10.1038/srep38787 CrossRefGoogle Scholar
  16. 16.
    Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:13.  https://doi.org/10.3389/fphar.2015.00286 CrossRefGoogle Scholar
  17. 17.
    Wu CH, Lan CH, Wu KL, Wu YM, Jane WN, Hsiao M, Wu HC (2018) Hepatocellular carcinoma-targeted nanoparticles for cancer therapy. Int J Oncol 52(2):389–401Google Scholar
  18. 18.
    Yang J, Shimada Y, Olsthoorn RCL, Snaar-Jagalska BE, Spaink HP, Kros A (2016) Application of coiled coil peptides in liposomal anticancer drug delivery using a zebrafish xenograft model. ACS Nano 10(8):7428–7435.  https://doi.org/10.1021/acsnano.6b01410 CrossRefGoogle Scholar
  19. 19.
    Matyszewska D (2014) Drug delivery systems in the transport of doxorubicin. Surf Innov 2(4):201–210.  https://doi.org/10.1680/si.13.00040 CrossRefGoogle Scholar
  20. 20.
    Geiger S, Lange V, Suhl P, Heinemann V, Stemmler HJ (2010) Anticancer therapy induced cardiotoxicity: review of the literature. Anticancer Drugs 21(6):578–590.  https://doi.org/10.1097/CAD.0b013e3283394624 CrossRefGoogle Scholar
  21. 21.
    Kanamala M, Wilson WR, Yang MM, Palmer BD, Wu ZM (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167.  https://doi.org/10.1016/j.biomaterials.2016.01.061 CrossRefGoogle Scholar
  22. 22.
    Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, Nishiwaki Y, Kodama T, Suga M, Ochiai A (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10(5):1691–1697.  https://doi.org/10.1158/1078-0432.ccr-0937-3 CrossRefGoogle Scholar
  23. 23.
    Nagashima S, Soda H, Oka M, Kitazaki T, Shiozawa K, Nakamura Y, Takemura M, Yabuuchi H, Fukuda M, Tsukamoto K, Kohno S (2006) BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer. Cancer Chemother Pharmacol 58(5):594–600.  https://doi.org/10.1007/s00280-006-0212-y CrossRefGoogle Scholar
  24. 24.
    Dai Z, Yao Q, Zhu L (2016) MMP2-sensitive PEG-lipid copolymers: a new type of tumor-targeted P-glycoprotein inhibitor. ACS Appl Mater Interfaces 8(20):12661–12673.  https://doi.org/10.1021/acsami.6b03064 CrossRefGoogle Scholar
  25. 25.
    Dai CL, Tiwari AK, Wu CP, Su XD, Wang SR, Liu DG, Ashby CR, Huang Y, Robey RW, Liang YJ, Chen LM, Shi CJ, Ambudkar SV, Chen ZS, Fu LW (2008) Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 68(19):7905–7914.  https://doi.org/10.1158/0008-5472.can-08-0499 CrossRefGoogle Scholar
  26. 26.
    Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L (2017) Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 142:271–289.  https://doi.org/10.1016/j.ejmech.2017.07.062 CrossRefGoogle Scholar
  27. 27.
    Radic-Sarikas B, Halasz M, Huber KVM, Winter GE, Tsafou KP, Papamarkou T, Brunak S, Kolch W, Superti-Furga G (2017) Lapatinib potentiates cytotoxicity of YM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Sci Rep 7:8.  https://doi.org/10.1038/s41598-017-03129-6 CrossRefGoogle Scholar
  28. 28.
    Zhang W, Chen Z, Chen LK, Wang F, Li FR, Wang XK, Fu LW (2017) ABCG2-overexpressing H460/MX20 cell xenografts in athymic nude mice maintained original biochemical and cytological characteristics. Sci Rep 7:8.  https://doi.org/10.1038/srep40064 CrossRefGoogle Scholar
  29. 29.
    Wan X, Zheng XY, Pang XY, Zhang ZM, Zhang QZ (2015) Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloid Surf B Biointerfaces 136:817–827.  https://doi.org/10.1016/j.colsurfb.2015.10.018 CrossRefGoogle Scholar
  30. 30.
    Pircher M, Mlineritsch B, Fridrik MA, Dittrich C, Lang A, Petru E, Weltermann A, Thaler J, Hufnagl C, Gampenrieder SP, Rinnerthaler G, Ressler S, Ulmer H, Greil R (2015) Lapatinib-plus-pegylated liposomal doxorubicin in advanced HER2-positive breast cancer following trastuzumab. A phase II trial. Anticancer Res 35(1):517–521Google Scholar
  31. 31.
    Rocca A, Cecconetto L, Passardi A, Melegari E, Andreis D, Monti M, Maltoni R, Sarti S, Pietri E, Schirone A, Fabbri F, Donati C, Nanni O, Fedeli A, Faedi M, Amadori D (2017) Phase Ib dose-finding trial of lapatinib plus pegylated liposomal doxorubicin in advanced HER2-positive breast cancer. Cancer Chemother Pharmacol 79(5):863–871.  https://doi.org/10.1007/s00280-017-3279-8 CrossRefGoogle Scholar
  32. 32.
    Jiang TY, Mo R, Bellotti A, Zhou JP, Gu Z (2014) Molecule drugs for enhanced therapeutic efficacy. Adv Funct Mater 24(16):2295–2304.  https://doi.org/10.1002/adfm.201303222 CrossRefGoogle Scholar
  33. 33.
    Zhang B, Wang TQ, Yang SM, Xiao YA, Song YM, Zhang N, Garg S (2016) Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 238:10–21.  https://doi.org/10.1016/j.jconrel.2016.07.022 CrossRefGoogle Scholar
  34. 34.
    Tian G, Zhang X, Gu ZJ, Zhao YL (2015) Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv Mater 27(47):7692–7712.  https://doi.org/10.1002/adma.201503280 CrossRefGoogle Scholar
  35. 35.
    Reddy TL, Garikapati KR, Reddy SG, Reddy BVS, Yadav JS, Bhadra U, Bhadra MP (2016) Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci Rep 6:12.  https://doi.org/10.1038/srep35223 CrossRefGoogle Scholar
  36. 36.
    Long H, Zhang S, Liu C, Shi J, Tao L, Situ D, Ma G, Zheng Y, Fu L (2012) Characterization of a stem cell population in lung cancer cell line Glc-82. Thorac Cancer 3(1):8–18.  https://doi.org/10.1111/j.1759-7714.2011.00089.x CrossRefGoogle Scholar
  37. 37.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:2.  https://doi.org/10.1186/1556-276x-8-102 CrossRefGoogle Scholar
  38. 38.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284.  https://doi.org/10.1038/nrc1590 CrossRefGoogle Scholar
  39. 39.
    Hu YP, Tao LY, Wang F, Zhang JY, Liang YJ, Fu LW (2013) Secalonic acid D reduced the percentage of side populations by down-regulating the expression of ABCG2. Biochem Pharmacol 85(11):1619–1625.  https://doi.org/10.1016/j.bcp.2013.04.003 CrossRefGoogle Scholar
  40. 40.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169.  https://doi.org/10.1042/bj20031253 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina
  4. 4.Qingdao Institute for Marine TechnologyTianjin UniversityQingdaoChina

Personalised recommendations