Journal of Materials Science

, Volume 54, Issue 13, pp 9622–9631 | Cite as

Reduced graphene oxide@CoSe2 interlayer as anchor of polysulfides for high properties of lithium–sulfur battery

  • Xiangyang Zhou
  • Xinyu Luo
  • Hui Wang
  • Juan Yang
  • Herong Xu
  • Ming Jia
  • Jingjing TangEmail author
Energy materials


Lithium sulfur (Li–S) battery is regarded as one of the most appealing competitors for the succeeding generation energy storage systems. Nevertheless, the pragmatical application of Li–S battery on a large-scale is obstructed by its short cycle life and low Coulombic efficiencies, originating from the notorious shuttle effect. To resolve this issue, in this manuscript, the reduced graphene oxide@CoSe2 (rGO@CoSe2) is proposed for the first time to revise the part of separators in the Li–S battery to restrain the shuttling of polysulfides with the aid of graphene with physical absorption and CoSe2 particles with strong chemical anchoring of lithium polysulfides. The results indicate that the Li–S battery fabricated with rGO@CoSe2-redevised separator presents high initial discharge capacities of 1180 mAh g−1 at 0.2 C (1C = 1675 mAh g−1) and long cycle stability at 0.5 C with a low capacity decrease rate of 0.0856% per cycle. The proposed approach demonstrates a viable way for practical application of Li–S battery with good electrochemical properties.



This research was funded by the National Natural Science Foundation of China (51802354, 51871247, 51774343).

Supplementary material

10853_2019_3571_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3509 kb)


  1. 1.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  3. 3.
    Manthiram A, Fu Y, Su YS (2013) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46:1125–1134CrossRefGoogle Scholar
  4. 4.
    Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200CrossRefGoogle Scholar
  5. 5.
    Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium–ion batteries: potential alternatives to current lithium–ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  6. 6.
    Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRefGoogle Scholar
  7. 7.
    Walle MD, Zhang Z, Zhang M, You X, Li Y, Liu YN (2018) Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries. J Mater Sci 53:2685–2696. CrossRefGoogle Scholar
  8. 8.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRefGoogle Scholar
  9. 9.
    Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRefGoogle Scholar
  10. 10.
    Li Y, Zhan H, Liu S, Huang K, Zhou Y (2010) Electrochemical properties of the soluble reduction products in rechargeable Li/S battery. J Power Sources 195:2945–2949CrossRefGoogle Scholar
  11. 11.
    Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 124:3651–3655CrossRefGoogle Scholar
  12. 12.
    Zheng D, Zhang X, Wang J, Qu D, Yang X, Qu D (2016) Reduction mechanism of sulfur in lithium–sulfur battery: from elemental sulfur to polysulfide. J Power Sources 301:312–316CrossRefGoogle Scholar
  13. 13.
    Barchasz C, Molton F, Duboc C, Leprêtre JC, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980CrossRefGoogle Scholar
  14. 14.
    Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46:1135–1143CrossRefGoogle Scholar
  15. 15.
    Yang J, Xie J, Zhou X, Zou Y, Tang J, Wang S, Chen F, Wang L (2014) Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. J Phys Chem C 118:1800–1807CrossRefGoogle Scholar
  16. 16.
    Li X, Cheng X, Gao M, Ren D, Liu Y, Guo Z, Shang C, Sun L, Pan H (2017) Amylose derived macro-hollow core and micro-porous shell carbon spheres as sulfur host for superior lithium–sulfur battery cathodes. ACS Appl Mater Interfaces 12:10717–10729CrossRefGoogle Scholar
  17. 17.
    Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647CrossRefGoogle Scholar
  18. 18.
    Shin JH, Jung SS, Kim KW, Ahn HJ, Ahn JH (2002) Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J Mater Sci: Mater Electron 13:727–733Google Scholar
  19. 19.
    Liang X, Kwok CY, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H (2016) Lithium–sulfur batteries: tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “Goldilocks” principle. Adv Energy Mater 6:1614–6832Google Scholar
  20. 20.
    Li Z, Yin L (2015) Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl Mater Interfaces 7:4029–4038CrossRefGoogle Scholar
  21. 21.
    Chung SH, Manthiram A (2015) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater 24:5299–5306CrossRefGoogle Scholar
  22. 22.
    Zeng P, Huang L, Han Y, Zhang X, Zhang R, Chen Y (2018) Reduced shuttle effect of lithium − sulfur batteries by using a simple graphite-modified separator with a preformed SEI film. Chemelectrochem 5:375–382CrossRefGoogle Scholar
  23. 23.
    Lin W, Chen Y, Li P, He J, Zhao Y, Wang Z, Liu J, Qi F, Zheng B, Zhou J (2015) Enhanced performance of lithium sulfur battery with a reduced graphene oxide coating separator. J Electrochem Soc 162:A1624–A1629CrossRefGoogle Scholar
  24. 24.
    Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9:3002–3011CrossRefGoogle Scholar
  25. 25.
    Cheng X, Wang W, Wang A, Yuan K, Jin Z, Yang Y, Zhao X (2016) Oxidized multiwall carbon nanotube modified separator for high performance lithium–sulfur batteries with high sulfur loading. RSC Adv 6:89972–89978CrossRefGoogle Scholar
  26. 26.
    Li W, Hicksgarner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) V2O5 polysulfide anion barrier for long-lived Li–S batteries. Chem Mater 26:3403–3410CrossRefGoogle Scholar
  27. 27.
    Liu X, Huang JQ, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29:1601759CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3—coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61CrossRefGoogle Scholar
  29. 29.
    Ghazi ZA, Xiao H, Khattak AM, Khan NA, Liang B, Iqbal A, Wang J, Sin H, Li L, Tang Z (2017) MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv Mater 29:1606817CrossRefGoogle Scholar
  30. 30.
    Lai Y, Wang P, Qin F, Xu M, Li J, Zhang K, Zhang Z (2017) A carbon nanofiber@mesoporous δ-MnO2 nanosheet-coated separator for high-performance lithium–sulfur batteries. Energy Storage Mater 9:179–187CrossRefGoogle Scholar
  31. 31.
    Jr WSH, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  32. 32.
    Zhang W, Yang Z, Liu J, Hui Z, Yu W, Qian Y, Zhou G, Li Y (2000) A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2. Mater Res Bull 35:2403–2408CrossRefGoogle Scholar
  33. 33.
    Li Z, Xue H, Wang J, Tang Y, Lee CS, Yang S (2016) Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium–ion batteries with excellent cyclic performance. Chemelectrochem 2:1682–1686CrossRefGoogle Scholar
  34. 34.
    Zhang S, Zeng XT, Xie H, Hing P (2000) A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films. Surf Coat Technol 123:256–260CrossRefGoogle Scholar
  35. 35.
    Petrova E, Tinchev S, Nikolova P (2011) Interference effects on the ID/IG ratio of the Raman spectra of diamond-like carbon thin films. Eprint Arxiv 62:717–723Google Scholar
  36. 36.
    Huang JQ, Zhang Q, Peng HJ, Liu XY, Qian WZ, Wei F (2013) Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ Sci 7:347–353CrossRefGoogle Scholar
  37. 37.
    Zhuang TZ, Huang JQ, Peng HJ, He LY, Cheng XB, Chen CM, Zhang Q (2016) Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium–sulfur batteries. Small 12:381–389CrossRefGoogle Scholar
  38. 38.
    Zeng Q, Li F, Gentle IR, Cheng HM, Wang DW (2015) Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in Li–S batteries. Carbon 93:161–168CrossRefGoogle Scholar
  39. 39.
    Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium–sulfur batteries. Adv Energy Mater 7:1602876CrossRefGoogle Scholar
  40. 40.
    Fang R, Zhao S, Pei S, Qian X, Hou PX, Cheng HM, Liu C, Li F (2016) Toward more reliable lithium–sulfur batteries: an all-graphene cathode structure. ACS Nano 10:8676–8682CrossRefGoogle Scholar
  41. 41.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power Lithium–Sulfur batteries. Angew Chem Int Ed 50:5904–5908CrossRefGoogle Scholar
  42. 42.
    Nair JR, Bella F, Angulakshmi N, Stephan AM, Gerbaldi C (2016) Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Mater 3:69–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations