Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9414–9425 | Cite as

Preparation of nanostructured TiO2 films with high catalytic activity and their 3D spatial distribution of anatase and rutile phases

  • M. T. ColomerEmail author
  • A. del Campo
Chemical routes to materials
  • 10 Downloads

Abstract

In this study, a facile, cheap, scalable, and environmentally friendly method has been developed to prepare nanostructured TiO2 coatings with a high catalytic activity. In addition, a protocol to characterize the prepared films in order to obtain consistent results between their texture, their structure, their microstructure, and their catalytic behavior has been established. For that, two types of TiO2 coatings have been fabricated by applying once TiO2 aqueous suspensions, prepared from commercial nanopowders, by immersion followed by an adequate thermal treatment. The first type of films is constituted by coatings with anatase as single phase, and the second one by films with a rutile molar fraction of XR = 0.07 ± 0.02, determined from grazing incidence X-ray diffraction (GI-XRD) data. High spatial resolution chemical imaging, obtained by confocal Raman microscopy (CRM), of the surface and of the cross section for the films showed a good distribution of rutile without any segregation of this phase. Furthermore, high resolution electron microscopy (HREM) confirmed the presence of anatase/rutile biphasic domains in those areas in which both phases were previously found together by CRM. In addition, the catalytic data fit to a first-order kinetic model with high catalytic reaction constants (k′), especially when rutile is present. Furthermore, consistent results have been found in this study between the textural, structural, and microstructural studied features with the catalytic properties for the prepared TiO2 films.

Notes

Acknowledgements

This work was supported by MINECO (Government of Spain) and Feder Funds under Grant no. MAT2016-78700-R. The authors are also grateful to Mrs. C. Díaz-Dorado for her help in the preparation of FEG-SEM, TEM, and HREM pictures.

References

  1. 1.
    Chen HH, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948CrossRefGoogle Scholar
  2. 2.
    Henderson MA, Robbins MD (2011) Methylene bromide chemistry and photochemistry on rutile TiO2 (110). Surf Sci 605:1834–1841CrossRefGoogle Scholar
  3. 3.
    Yuan L, Weng XL, Zhou M, Zhang QY, Deng LJ (2017) Structural and visible-near infrared optical properties of Cr-doped TiO2 for colored pigments. Nano Res Lett 12:597CrossRefGoogle Scholar
  4. 4.
    O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  5. 5.
    Liu ZY, Zhang XT, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2007) Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a hetereogeneous nanostructure via layer-by-layer assembly. Langmuir 23:10916–10919CrossRefGoogle Scholar
  6. 6.
    Baba K, Bulou S, Choquet P, Boscher ND (2017) Photocatalytic anatase TiO2 thin films on polymer optical fiber using atmospheric-pressure plasma. ACS Appl Mater Interfaces 9:13733–13741CrossRefGoogle Scholar
  7. 7.
    Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films 496:42–48CrossRefGoogle Scholar
  8. 8.
    Castaneda L (2007) Effect of palladium coatings on oxygen sensors of titanium dioxide thin films. Mater Sci Eng B 139:149–154CrossRefGoogle Scholar
  9. 9.
    Chibani O, Touam T, Chelouche A, Ouarez L (2018) Investigation of the effects of acidic pH and annealing on the properties of nanostructured TiO2 thin films for waveguiding applications. J Alloys Compd 768:866–874CrossRefGoogle Scholar
  10. 10.
    Colomer MT (2006) Nanoporous anatase thin films as fast proton-conducting materials. Adv Mater 18:371–374CrossRefGoogle Scholar
  11. 11.
    Colomer MT (2006) Nanoporous anatase ceramic membranes as fat-proton-conducting materials. J Eur Ceram Soc 26:1231–1236CrossRefGoogle Scholar
  12. 12.
    Gerisher H (1993). In: Ollis DF, Al-Ekabi H (eds) Proceedings of photocatalytic purification and treatment of water and air (1st International Conference, London, Ontario, Canada). ElsevierGoogle Scholar
  13. 13.
    Negishi N, Takeuchi K, Ibusuki T (1997) The surface structure of titanium dioxide thin films photocatalyst. Appl Surf Sci 121:417–420CrossRefGoogle Scholar
  14. 14.
    Guillard C, Beeaugiraud B, Durtriez C, Herrmann JM, Jaffrezic H, Jaffrezic-Renault N, Lacroix M (2002) Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol-gel methods. Appl Catal B Environ 39:331–342CrossRefGoogle Scholar
  15. 15.
    Liu XZ, Wen K, Deng CM, Yang K, Deng CG, Liu M, Zhou KS (2018) Nanostructured photocatalytic TiO2 coating deposited by suspension plasma spraying with different injection positions. J Therm Spray Technol 27:245–254CrossRefGoogle Scholar
  16. 16.
    Wang XY, Liu Z, Liao H, Klein D, Coddet C (2004) Microstructure and electrical properties of plasma sprayed porous TiO2 coatings containing anatase. Symp Thin Solid Films 451:37–42CrossRefGoogle Scholar
  17. 17.
    Toma F-L, Keller N, Bertrand G, Klein D, Coddet C (2003) Elaboration and characterization of environmental properties of TiO2 plasma sprayed coatings. Int J Photoenergy 5:141–145CrossRefGoogle Scholar
  18. 18.
    Colmenares-Angulo J, Zhao S, Young C, Orlov A (2009) The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings. Surf Coat Technol 204:423–427CrossRefGoogle Scholar
  19. 19.
    Toma F-L, Berger L-M, Jacquet D, Wicky D, Villaluenga I, de Miguel YR, Lindelov JS (2009) Comparative study on the photocatalytic behavior of titanium oxide thermal sprayed coatings from powders and suspensions. Surf Coat Technol 203:2150–2156CrossRefGoogle Scholar
  20. 20.
    Manuputty MY, Dreyer JAH, Sheng Y, Bringley EJ, Botero ML, Akroyd J, Kraft M (2019) Polymorphism of nanocrystalline TiO2 prepared in a stagnation flame: formation of the TiO2-II phase. Chem Sci 10(5):1342–1350CrossRefGoogle Scholar
  21. 21.
    Kozerski S, Toma F-L, Pawlowski L, Leupolt B, Latka L, Berger L-M (2010) Suspension plasma sprayed TiO2 coatings using different injectors and their photocatalytic properties. Surf Coat Technol 205(4):980–986CrossRefGoogle Scholar
  22. 22.
    Bannier E, Daraut G, Sánchez E, Denoijean A, Bordes MC, Salvador MD, Rayón E, Ageorges H (2011) Microstructure and photocatalytic activity of suspension plasma sprayed TiO2 coatings on steel and glass substrates. Surf Coat Technol 206:378–386CrossRefGoogle Scholar
  23. 23.
    Bai M, Khammas R, Guan L, Murray JW, Hussain T (2017) Suspension high velocity oxy-fuel spraying of a rutile TiO2 feedstock: microstructure, phase evolution and photocatalytic behavior. Ceram Int 43:15288–15295CrossRefGoogle Scholar
  24. 24.
    Islak S, Buytoz S, Ersoz E, Orhan N, Stokes J, Hashmi MS, Somuskiran I, Tosun N (2012) Effect on microstructure of TiO2 rate in Al2O3–TiO2 composite coating produced using plasma spray method. Optoelectron Adv Mater Rapid Commun 6:844–849Google Scholar
  25. 25.
    Podlesak H, Pawlowski L, Laurenys J, Jaworski R, Lampke T (2008) Advanced microstructural study of suspension plasma sprayed titanium oxide coatings. Surf Coat Technol 202:3723–3731CrossRefGoogle Scholar
  26. 26.
    Bemporad E, Bolelli G, Canillo V, Felicis D, Gadow R, Killinger A, Lusvarghi L, Rauch J, Sebastiani M (2010) Structural characterisation of high velocity suspension flame sprayed (HVSFS) TiO2 coatings. Surf Coat Technol 204:3902–3910CrossRefGoogle Scholar
  27. 27.
    Pala Z, Shaw E, Murray JW, Senin N, Hussain T (2017) Suspension high velocity oxy-fuel spraying of TiO2: a quantitative approach to phase composition. J Eur Ceram Soc 37(2):801–810CrossRefGoogle Scholar
  28. 28.
    Bickley RI, Gonzalezcarreno T, Lees JS, Palmisano L, Tilley RD (1991) A structural investigation of titanium-dioxide photocatalysts. J Solid State Chem 92:178–190CrossRefGoogle Scholar
  29. 29.
    Guimaraes RR, Parussulo ALA, Araki K (2016) Impact of nanoparticles preparation method on the synergic effect in anatase/rutile mixtures. Electrochim Acta 222:1378–1386CrossRefGoogle Scholar
  30. 30.
    Wang W-K, Chen J-J, Zhang X, Huang Y-X, Li W-W, Yu H-Q (2016) Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Sci Rep 6:20491CrossRefGoogle Scholar
  31. 31.
    Su R, Bechstein R, So L, Vang RT, Sillassen M, Esbjornsson B, Palmqvist A, Besenbacher F (2011) How the anatase-to-rutile ratio influences the photoactivity of TiO2. J Phys Chem C 115:24287–24292CrossRefGoogle Scholar
  32. 32.
    Kho YK, Iwase A, Teoh WY, Maedler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829CrossRefGoogle Scholar
  33. 33.
    Tiwari A, Mondal I, Ghosh S, Chatttopadhyay N, Pal U (2016) Fabrication of mixed phase TiO2 heterojunction nanorods and their enhanced photoactivities. Phys Chem Chem Phys 18:15260–15268CrossRefGoogle Scholar
  34. 34.
    Staiger M, Bowen P, Ketterer J, Bohonek J (2002) Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J Dispers Sci Techol 23(5):619–630CrossRefGoogle Scholar
  35. 35.
    Criado J, Real C (1983) Mechanism of the inhibiting effect of phosphate on the anatase/rutile transformation induced by thermal and mechanical treatment of TiO2. J Chem Soc Faraday Trans I Phys Chem Condens Phases 79(12):2765–2771Google Scholar
  36. 36.
    Gullikson EM (2009) X-ray data booklet, compiled and edited by Thompson AC and Gullikson EM (2009) chapter 1, section 1.6., Lawrence Berkeley National Laboratory, USA, pp 1–38Google Scholar
  37. 37.
    Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) The Raman spectrum of brookite, TiO2 (PBCA, Z = 8). J Raman Spectrosc 26(1):57–62CrossRefGoogle Scholar
  38. 38.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  39. 39.
    Fazio S, Guzmán J, Colomer MT, Salomoni A, Moreno R (2008) Colloidal stability of nanosized titania aqueous suspensions. J Eur Ceram Soc 28:2171–2176CrossRefGoogle Scholar
  40. 40.
    Yan J, Wu G, Guan N, Li L, Li Z, Cao X (2013) Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys Chem Phys 15:10978–10988CrossRefGoogle Scholar
  41. 41.
    Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33(8):912–916CrossRefGoogle Scholar
  42. 42.
    Zhu K-R, Zhang M-S, Chen Q, Yin Z (2005) Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys Lett A 340(1–4):220–227CrossRefGoogle Scholar
  43. 43.
    Parussulo ALA, Bonacin JA, Toma SH, Araki K, Toma HE (2009) Unravelling the chemical morphology of a mesoporous titanium dioxide interface by confocal Raman microscopy: new clues for improving the efficiency of dye solar cells and photocatalysts. Langmuir 25:11269–11271CrossRefGoogle Scholar
  44. 44.
    Ruan P, Quian JS, Xu YF, Xie HX, Shao CL, Zhou XF (2013) Mixed-phase TiO2 nanorods assembled microsphere: crystal phase control and photovoltaic application. CrystEngComm 15:5093–5099CrossRefGoogle Scholar
  45. 45.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549CrossRefGoogle Scholar
  46. 46.
    Zhang X, Lin YH, He DQ, Zhang JF, Fan ZY, Xie TF (2011) Interface junction at anatase/rutile in mixed-phase TiO2: formation and photo-generated charge carriers properties. Chem Phys Lett 504:71–75CrossRefGoogle Scholar
  47. 47.
    Houas A, Lachheb H, Ksibi M, Elaoloui E, Guillard C, Hermann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–147CrossRefGoogle Scholar
  48. 48.
    Bordes MC, Vicent M, Moreno A, Moreno R, Borrell A, Salvador MD, Sánchez E (2013) Microstructure and photocatalytic activity of APS coatings obtained from different TiO2 nanopowders. Surf Coat Technol 220:179–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Cerámica y Vidrio (CSIC)MadridSpain

Personalised recommendations