Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9656–9665 | Cite as

Synthesis of Au-nanoparticle-loaded 1T@2H-MoS2 nanosheets with high photocatalytic performance

  • Lie Tian
  • Rong WuEmail author
  • HaiYang Liu
Energy materials
  • 37 Downloads

Abstract

Although nanosheets of the transition metal dichalcogenides MoS2 have been the subject of extensive attention and research due to their unique properties, little research has been conducted on hybrid-phase MoS2 (1T@2H-MoS2), which has high photocatalytic properties. In this study, we prepared 1T@2H-MoS2 nanosheets loaded with Au nanoparticles (NPs) which exhibited high photocatalytic properties by a simple hydrothermal method, and the photocatalytic degradation of methylene blue by the 1T@2H-MoS2/Au nanosheets under visible light was 91.2%. This high degradation efficiency was due to the introduction of the Au NPs to produce localised surface plasmon resonance, which enhances the visible light absorption of 1T@2H-MoS2. The combination of a high content of the 1T phase and the Au NPs accelerates the transfer of photogenerated electrons, which inhibits the recombination of photogenerated electron–hole pairs and allows more electrons to participate in the catalytic reaction. The results showed that loading Au NPs on the 1T@2H-MoS2 nanosheets promoted the conversion of the 2H phase to the 1T phase, which effectively improved the visible light catalytic performance.

Notes

Acknowledgements

This study was financially supported by Natural Science Foundation of Xinjiang (2017D01C055).

References

  1. 1.
    Karn B, Kuiken T, Otto M (2009) Environ Health Perspect 117:1813–1831.  https://doi.org/10.1289/ehp.0900793 CrossRefGoogle Scholar
  2. 2.
    Wang S, Sun H, Ang HM, Tadé MO (2013) Chem Eng J 226:336–347CrossRefGoogle Scholar
  3. 3.
    Zou JP, Ma J, Luo JM et al (2015) Appl Catal B 179:220–228CrossRefGoogle Scholar
  4. 4.
    Kong D, Wang H, Cha JJ et al (2013) Nano Lett 13:1341–1347.  https://doi.org/10.1021/nl400258t CrossRefGoogle Scholar
  5. 5.
    Chhowalla M, Amaratunga GAJ (2000) Nature 407:164–167CrossRefGoogle Scholar
  6. 6.
    Ekspong J, Sandström R, Rajukumar LP, Terrones M, Wågberg T, Gracia-Espino E (2018) Adv Func Mater 28:1802744–1802753.  https://doi.org/10.1002/adfm.201802744 CrossRefGoogle Scholar
  7. 7.
    Geng X, Sun W, Wu W et al (2016) Nat Commun 7:10672–10679CrossRefGoogle Scholar
  8. 8.
    Morales-Guio CG, Lucas-Alexandre S, Xile H (2014) Chem Soc Rev 43:6555–6569CrossRefGoogle Scholar
  9. 9.
    Berit H, Poul Georg M, Jacob B et al (2005) J Am Chem Soc 127:5308–5309CrossRefGoogle Scholar
  10. 10.
    Chen TY, Chang TH et al (2013) Int J Hydrogen Energy 38:12302–12309CrossRefGoogle Scholar
  11. 11.
    Damien V, Hisato Y, Junwen L et al (2013) Nat Mater 12:850–855CrossRefGoogle Scholar
  12. 12.
    Lukowski MA, Daniel AS, Fei M, Audrey F, Linsen L, Song J (2013) J Am Chem Soc 135:10274–10277CrossRefGoogle Scholar
  13. 13.
    Goki E, Takeshi F, Hisato Y, Damien V, Mingwei C, Manish C (2012) ACS Nano 6:7311–7317CrossRefGoogle Scholar
  14. 14.
    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik ER, Du A (2015) J Phys Chem C 119:13124–13128CrossRefGoogle Scholar
  15. 15.
    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2012) Nano Lett 12:5111–5116CrossRefGoogle Scholar
  16. 16.
    Wei S, Wu R, Jian J, Sun Y (2015) RSC Adv 5:57240–57244CrossRefGoogle Scholar
  17. 17.
    Wei S, Wu R, Jian J et al (2015) Rsc Adv 5:40348–40351CrossRefGoogle Scholar
  18. 18.
    Wang HX, Wu R, Wei SH et al (2016) Chin Chem Lett 27:1572–1576CrossRefGoogle Scholar
  19. 19.
    Jo S, Verma P, Kuwahara Y, Mori K, Choi W, Yamashita H (2017) J Mater Chem A 5:21883–21892.  https://doi.org/10.1039/c7ta07264c CrossRefGoogle Scholar
  20. 20.
    Irfan S, Li L, Saleemi AS, Nan C-W (2017) J Mater Chem A 5:11143–11151.  https://doi.org/10.1039/c7ta01847a CrossRefGoogle Scholar
  21. 21.
    Yimin K, Sina N, Zheng L et al (2014) Adv Mater 26:6467–12689CrossRefGoogle Scholar
  22. 22.
    Liu Q, Li X, He Q et al (2015) Small 11:5556–5564.  https://doi.org/10.1002/smll.201501822 CrossRefGoogle Scholar
  23. 23.
    Qi Y, Xu Q, Wang Y, Yan B, Ren Y, Chen Z (2016) ACS Nano 10:2903–2909.  https://doi.org/10.1021/acsnano.6b00001 CrossRefGoogle Scholar
  24. 24.
    Cai L, Cheng W, Yao T et al (2017) J Phys Chem C 121:15071–15077.  https://doi.org/10.1021/acs.jpcc.7b03103 CrossRefGoogle Scholar
  25. 25.
    Camden JP, Dieringer JA, Jing Z, Van Duyne RP (2008) Acc Chem Res 41:1653–1661CrossRefGoogle Scholar
  26. 26.
    Li Y, Cain JD, Hanson ED et al (2016) Nano Lett 16:7696–7702.  https://doi.org/10.1021/acs.nanolett.6b03764 CrossRefGoogle Scholar
  27. 27.
    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Nano Lett 11:5111–5116CrossRefGoogle Scholar
  28. 28.
    Kang Y, Najmaei S, Liu Z et al (2014) Adv Mater 26:6467–6471.  https://doi.org/10.1002/adma.201401802 CrossRefGoogle Scholar
  29. 29.
    Cao R, Xia T, Zhu R et al (2018) Appl Surf Sci 433:840–846.  https://doi.org/10.1016/j.apsusc.2017.10.104 CrossRefGoogle Scholar
  30. 30.
    Hong SJ, Lee S, Jang JS, Lee JS (2011) Energy Environ Sci 4:1781–1787.  https://doi.org/10.1039/c0ee00743a CrossRefGoogle Scholar
  31. 31.
    Yang X, Wu R, Liu H, Fan H, Zhang H, Sun Y (2018) Appl Surf Sci 457:214–220.  https://doi.org/10.1016/j.apsusc.2018.06.039 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics Science and TechnologyXinjiang UniversityÜrümqiPeople’s Republic of China

Personalised recommendations