Advertisement

Journal of Materials Science

, Volume 54, Issue 14, pp 10355–10370 | Cite as

Epoxy-embedded silver nanowire meshes for transparent flexible electrodes

  • Lei Miao
  • Guojun LiuEmail author
  • Kevin McEleney
  • Jiandong Wang
Energy materials
  • 160 Downloads

Abstract

Spreading a Ag nanowire (NW) dispersion using a bar coater onto a poly(ethylene terephthalate) (PET) film and evaporating the solvent yielded a transparent NW mesh. Further spreading a solution of bisphenol A diglycidyl ether and hardeners over this mesh using the bar coater and curing the epoxy precursors produced an epoxy-embedded NW mesh or an embedded NW electrode. Various techniques including scanning electron microscopy, transmission electron microscopy, and measurements of sheet resistance and transmittance were used to monitor the electrode fabrication process, which involved NW synthesis, casting NWs onto PET or glass substrates, subjecting the NW mesh to plasma treatment, and mesh embedment by an epoxy. Using our casting method, the areal density of the spread NWs and the thickness of the epoxy layer could be readily tuned by changing the concentrations of the NW dispersion and the epoxy precursory solution concentration, respectively. Our optimized electrodes had a Ag mass density of 1.0 × 10−5 g/cm2 in the NW mesh, embedded in an epoxy layer with a thickness of 0.6 µm. While many of the NW junctions in the mesh were locked in the coating matrix, sections of the NWs were arched over the epoxy layer to provide the required electrical contact with external devices. The optimized electrodes had a sheet resistance Rs value of 18.9 ± 4.8 Ω/□ and a transmittance (T%) of 86.5 ± 0.3% at 550 nm. In addition, the embedded electrode withstood 500 cycles of bending, 500 repetitions of rubbing, and over 100 cycles of an adhesion tape test without noticeable deteriorations in their Rs and T% values. Furthermore, their high-temperature stability and sulfurization resistance were significantly enhanced over those of the unembedded electrodes and they also withstood soaking in ethanol and acetone. The ready availability and affordability of the epoxy formulation and the high control of the epoxy deposition protocol suggest that this electrode fabrication strategy has significant practical value.

Notes

Acknowledgements

GL thanks NSERC of Canada for sponsoring this research and the Canada Research Chairs (CRCs) program for Granting him a CRC position. LM thanks Foshan Functional Polymer Engineering Center (No. 2016GA10162) and Academic Funding of Foshan University for providing support and for sponsoring his visit.

References

  1. 1.
    Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482–1513CrossRefGoogle Scholar
  2. 2.
    Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692CrossRefGoogle Scholar
  3. 3.
    Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRefGoogle Scholar
  4. 4.
    Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J-P (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24:452001CrossRefGoogle Scholar
  5. 5.
    Zhang P, Wyman I, Hu JW, Lin SD, Zhong ZW, Tu YY, Huang ZZ, Wei YL (2017) Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater Sci Eng B-Adv 223:1–23CrossRefGoogle Scholar
  6. 6.
    Sun YG, Gates B, Mayers B, Xia YN (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168CrossRefGoogle Scholar
  7. 7.
    Seager CH, Pike GE (1974) Percolation and conductivity—a computer study ii. Phys Rev B 10:1435–1446CrossRefGoogle Scholar
  8. 8.
    Wu H, Hu LB, Rowell MW, Kong DS, Cha JJ, McDonough JR, Zhu J, Yang YA, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10:4242–4248CrossRefGoogle Scholar
  9. 9.
    Garnett EC, Cai WS, Cha JJ, Mahmood F, Connor ST, Christoforo MG, Cui Y, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241–249CrossRefGoogle Scholar
  10. 10.
    Chung WH, Kim SH, Kim HS (2016) Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes. Sci Rep 6:32086CrossRefGoogle Scholar
  11. 11.
    Li J, Tao Y, Chen SF, Li HY, Chen P, Wei MZ, Wang H, Li K, Mazzeo M, Duan Y (2017) A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Sci Rep 7:16468CrossRefGoogle Scholar
  12. 12.
    Deng B, Hsu PC, Chen GC, Chandrashekar BN, Liao L, Ayitimuda Z, Wu JX, Guo YF, Lin L, Zhou Y, Aisijiang M, Xie Q, Cui Y, Liu ZF, Peng HL (2015) Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett 15:4206–4213CrossRefGoogle Scholar
  13. 13.
    Zhang X, Yan X, Chen J, Zhao J (2014) Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 69:437–443CrossRefGoogle Scholar
  14. 14.
    Lee D, Lee H, Ahn Y, Jeong Y, Lee D-Y, Lee Y (2013) Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5:7750–7755CrossRefGoogle Scholar
  15. 15.
    Hwang B, Park M, Kim T, Han SM (2016) Effect of RGO deposition on chemical and mechanical reliability of Ag nanowire flexible transparent electrode. RSC Adv 6:67389–67395CrossRefGoogle Scholar
  16. 16.
    Chen D, Liang JJ, Liu C, Saldanha G, Zhao FC, Tong K, Liu J, Pei QB (2015) Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv Funct Mater 25:7512–7520CrossRefGoogle Scholar
  17. 17.
    Hwang B, An Y, Lee H, Lee E, Becker S, Kim Y-H, Kim H (2017) Highly flexible and transparent silver nanowire electrode encapsulated with ultra-thin alumina: thermal, ambient, and mechanical stabilities. Sci Rep 7:41336CrossRefGoogle Scholar
  18. 18.
    Song T-B, Rim YS, Liu F, Bob B, Ye S, Hsieh Y-T, Yang Y (2015) Highly robust silver nanowire network for transparent electrode. ACS Appl Mater Interfaces 7:24601–24607CrossRefGoogle Scholar
  19. 19.
    Vinogradov VV, Agafonov A, Avnir D (2014) Conductive sol–gel films. J Mater Chem C 2:3914–3920CrossRefGoogle Scholar
  20. 20.
    Hwang B, An C-H, Becker S (2017) Highly robust ag nanowire flexible transparent electrode with UV-curable polyurethane-based overcoating layer. Mater Des 129:180–185CrossRefGoogle Scholar
  21. 21.
    Wang J, Jiu J, Sugahara T, Nagao S, Nogi M, Koga H, He P, Suganuma K, Uchida H (2015) Highly reliable silver nanowire transparent electrode employing selectively patterned barrier shaped by self-masked photolithography. ACS Appl Mater Interfaces 7:23297–23304CrossRefGoogle Scholar
  22. 22.
    Jiu J, Wang J, Sugahara T, Nagao S, Nogi M, Koga H, Suganuma K, Hara M, Nakazawa E, Uchida H (2015) The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv 5:27657–27664CrossRefGoogle Scholar
  23. 23.
    Jin Y, Deng D, Cheng Y, Kong L, Xiao F (2014) Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 6:4812–4818CrossRefGoogle Scholar
  24. 24.
    Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122CrossRefGoogle Scholar
  25. 25.
    Zeng XY, Zhang QK, Yu RM, Lu CZ (2010) A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv Mater 22:4484–4488CrossRefGoogle Scholar
  26. 26.
    Moreno I, Navascues N, Arruebo M, Irusta S, Santamaria J (2013) Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites. Nanotechnology 24:275603CrossRefGoogle Scholar
  27. 27.
    Gu H, Tadakamalla S, Huang Y, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl Mater Interfaces 4:5613–5624CrossRefGoogle Scholar
  28. 28.
    Zhao Y, Barrera EV (2010) Asymmmetric diamino functionalization of nanotubes assisted by BOC protection and their epoxy nanocomposites. Adv Funct Mater 20:3039–3044CrossRefGoogle Scholar
  29. 29.
    Ellis B (1993) Chemistry and technology of epoxy resins. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Yim MJ, Paik KW (2006) Review of electrically conductive adhesive technologies for electronic packaging. Electron Mater Lett 2:183–194Google Scholar
  31. 31.
    Lux F (1993) Models proposed to explain the electrical-conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301.  https://doi.org/10.1007/BF00357799 CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Guo J, Xu D, Sun Y, Yan F (2017) One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl Mater Interfaces 9:25465–25473CrossRefGoogle Scholar
  33. 33.
    Hu H, Liu GJ, Wang J (2016) Clear and durable epoxy coatings that exhibit dynamic omniphobicity. Adv Mater Interfaces 3:1600001CrossRefGoogle Scholar
  34. 34.
    Xu F, Xu W, Mao B, Shen W, Yu Y, Tan R, Song W (2018) Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances > 90% and sheet resistances < 10 ohm/sq. J Colloid Interface Sci 512:208–218CrossRefGoogle Scholar
  35. 35.
    Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J (2013) Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24:335202CrossRefGoogle Scholar
  36. 36.
    Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905CrossRefGoogle Scholar
  37. 37.
    Rawat A, Mahavar H, Tanwar A, Singh P (2014) Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films. Bull Mater Sci 37:273–279CrossRefGoogle Scholar
  38. 38.
    Ge Y, Duan X, Zhang M, Mei L, Hu J, Hu W, Duan X (2017) Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors. J Am Chem Soc 140:193–199CrossRefGoogle Scholar
  39. 39.
    Nam S, Song M, Kim DH, Cho B, Lee HM, Kwon JD, Park SG, Nam KS, Jeong Y, Kwon SH, Park YC, Jin SH, Kang JW, Jo S, Kim CS (2014) Ultrasmooth, extremely deformable and shape recoverable ag nanowire embedded transparent electrode. Sci Rep 4:4788CrossRefGoogle Scholar
  40. 40.
    Poire E, Klembergsapieha J, Martinu L, Wertheimer MR, Liang S, Barton SS, Macdonald JA (1993) Modification of active-carbon by hydrophobic plasma polymers. Abstr Pap Am Chem Soc 205:151–163Google Scholar
  41. 41.
    Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23:863–871CrossRefGoogle Scholar
  42. 42.
    Takke V, Behary N, Perwuelz A, Campagne C (2009) Studies on the atmospheric air-plasma treatment of PET (polyethylene terephtalate) woven fabrics: effect of process parameters and of aging. J Appl Polym Sci 114:348–357CrossRefGoogle Scholar
  43. 43.
    Stokes DJ (2008) Principles and practice of variable pressure environmental scanning electron microscopy. Wiley, ChichesterGoogle Scholar
  44. 44.
    Skriver HL, Rosengaard N (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157CrossRefGoogle Scholar
  45. 45.
    Abbott JR, Higgins BG (1988) Surface tension of a curing epoxy. J Polym Sci, Part A-1: Polym Chem 26:1985–1988CrossRefGoogle Scholar
  46. 46.
    Atkins P (1998) Physical chemistry, 6th edn. Freeman, New YorkGoogle Scholar
  47. 47.
    Simmons JG (1963) Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J Appl Phys 34:2581–2590CrossRefGoogle Scholar
  48. 48.
    Scheideler WJ, Smith J, Deckman I, Chung S, Arias AC, Subramanian V (2016) A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors. J Mater Chem C 4:3248–3255CrossRefGoogle Scholar
  49. 49.
    Göbelt M, Keding R, Schmitt SW, Hoffmann B, Jäckle S, Latzel M, Radmilović VV, Radmilović VR, Spiecker E, Christiansen S (2015) Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy 16:196–206CrossRefGoogle Scholar
  50. 50.
    Park J-S, Chae H, Chung HK, Lee SI (2011) Thin film encapsulation for flexible am-oled: a review. Semicond Sci Technol 26:034001CrossRefGoogle Scholar
  51. 51.
    El Gouri M, El Bachiri A, Hegazi SE, Rafik M, El Harfi A (2009) Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym Degrad Stab 94:2101–2106CrossRefGoogle Scholar
  52. 52.
    Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato J-P (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 5:427–433CrossRefGoogle Scholar
  53. 53.
    Cui Z, Lü C, Yang B, Shen J, Su X, Yang H (2001) The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices. Polymer 42:10095–10100CrossRefGoogle Scholar
  54. 54.
    Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater 17:6042–6052CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Foshan UniversityFoshanPeople’s Republic of China
  2. 2.Queen’s UniversityKingstonCanada

Personalised recommendations