Advertisement

Journal of Materials Science

, Volume 54, Issue 11, pp 8472–8481 | Cite as

Strong exciton–photon coupling and polariton lasing in GaN microrod

  • Poulami GhoshEmail author
  • Dapeng YuEmail author
  • Tao Hu
  • Jing Liang
  • Zhanghai Chen
  • Liu Yingkai
  • Mingyuan Huang
Electronic materials
  • 227 Downloads

Abstract

We report on the studies of strong exciton photon coupling and polariton lasing at room temperature from single GaN microrods grown by metal-organic vapor phase epitaxy technique. Emission spectra were recorded at room temperature by exciting GaN microrods with pulsed Nd:YAG laser of 355 nm wavelength at different excitation power density. Clear mode formation corresponding to Whispering gallery modes in GaN microrod cavity has been observed. Strong exciton–photon coupling as well as large Rabi splitting energy of maximum 400 ± 40 meV has been observed from the microrods. This is attributed to the formation of new quasi-particles named polaritons with much lighter mass than free electron mass. Among those polariton modes, one of the modes increases super linearly with the increase in excitation power density which is an indication of polariton lasing.

Notes

Acknowledgements

P.G and D.Y acknowledge Mr. Q. Ji for providing GaN samples. P. G, D. Y and L. Y acknowledge National Natural Science Foundation of China (Grant No. 11164034), Key Applied Basic Research Program of Science and Technology Commission Foundation of Yunnan Province (Grant No. 2013FA035) and Innovative talents of Science and Technology Plan Projects of Yunnan Province (Grant No. 2012HA007). H. T and Z. C acknowledge National Science Foundation for China (Grant Nos.-11225419, 91321311).

Supplementary material

10853_2019_3493_MOESM1_ESM.pdf (352 kb)
Supplementary material 1 (PDF 352 kb)

References

  1. 1.
    Vugt LKV, Piccione BB, Cho C-H, Nukala P, Agarwal R (2011) One-dimensional polaritons with size tunable and enhanced coupling strengths in semiconductor nanowires. PNAS 108:10050–10055CrossRefGoogle Scholar
  2. 2.
    Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling JMJ, Marchetti FM, Szymanska MH, Andre R, Staehli JL, Savona V, Littlewood PB, Deveaud B, Dang LS (2006) Bose–Einstein condensation of exciton polaritons. Nature 443:409–414CrossRefGoogle Scholar
  3. 3.
    Das A, Heo J, Jankowski M, Guo W, Zhang L, Deng H, Bhattacharya P (2011) Room temperature ultralow threshold GaN nanowire polariton laser. Phys Rev Lett 107:066405-1–066405-5Google Scholar
  4. 4.
    Vugt LKV, Zhang B, Piccione B, Spector AA, Agarwal R (2009) Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding. Nano Lett 9:1684–1688CrossRefGoogle Scholar
  5. 5.
    Kavokin A, Gil B (1998) GaN microcavities: giant Rabi splitting and optical anisotropy. Appl Phys Lett 72:2880–2881CrossRefGoogle Scholar
  6. 6.
    Vugt LKV, Ruhle S, Ravindran P, Gerritsen HC, Kuipers L, Vanmaekelbergh D (2006) Exciton polaritons confined in a ZnO nanowire cavity. Phys Rev Lett 97:147401-1–147401-4Google Scholar
  7. 7.
    Trichet A, Medard F, Perez JZ, Alloing B, Richard M (2012) From strong to weak coupling regime in a single GaN microwire up to room temperature. New J Phys 14:073004-1–073004-14CrossRefGoogle Scholar
  8. 8.
    Li Y, Li Z, Chi C, Shan H, Zheng L, Zheyu F (2017) Plasmonics of 2D nanomaterials: properties and applications. Adv Sci 4:1600430-1–1600430-25Google Scholar
  9. 9.
    Farmani A, Miri M, Sheikhi MH (2017) Tunable resonant Goos–Hanchen and Imbert–Fedorov shifts in total reflection of tetrahertz beams from graphene plasmonic metasurfaces. JOSA B 34:1097–1106CrossRefGoogle Scholar
  10. 10.
    Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos–Hanchen effect. Appl Surf Sci 453:358–364CrossRefGoogle Scholar
  11. 11.
    Koppens FHL, Chang DE, Abajo FJG (2011) Graphene Plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRefGoogle Scholar
  12. 12.
    Alipour A, Farmani A, Mir A (2018) High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens J 18:7047–7054.  https://doi.org/10.1109/jsen.2018.2854882 CrossRefGoogle Scholar
  13. 13.
    Xu D, Xie W, Liu W, Wang J, Zhang L, Wang Y, Zhang S, Sun L, Shen X, Chen Z (2014) Polariton lasing in a ZnO microwire above 450K. Appl Phys Lett 104:082101-1–082101-4Google Scholar
  14. 14.
    Das A, Heo J, Bayraktaroglu A, Guo W, Ng T-K, Phillips J, Ooi BS, Bhattacharya P (2012) Room temperature strong coupling effects from single ZnO nanowire microcavity. Opt Express 20:11830–11837CrossRefGoogle Scholar
  15. 15.
    Lai YY, Lan YP, Lu TC (2013) Strong light matter interaction in ZnO microcavities. Light: Sci Appl 2:e76-1–e76-7CrossRefGoogle Scholar
  16. 16.
    Cilibrizzi P, Askitopoulos A, Silva M, Bastiman F, Clarke E, Zajac JM, Langbein W, Lagoudakis PG (2014) Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells. Appl Phys Lett 105:191118-1–191118-4CrossRefGoogle Scholar
  17. 17.
    Kaliteevski MA, Brand S, Abram RA, Kavokim A, Dang LS (2007) Whispering gallery polaritons in cylindrical cavities. Phys Rev B 75:233309-1–233309-4CrossRefGoogle Scholar
  18. 18.
    Gong SH, Ko SM, Jang MH, Cho YH (2015) Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire. Nano Lett 15:4517–4524CrossRefGoogle Scholar
  19. 19.
    Vugt LKV, Piccione BB, Agarwal R (2010) Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Appl Phys Lett 97:061115-1–061115-3Google Scholar
  20. 20.
    Ruhle S, Vugt LKV, Li HY, Keizer NA, Kuipers L, Vanmaekelbergh D (2008) Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire. Nano Lett 8:119–123CrossRefGoogle Scholar
  21. 21.
    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu ZQ, Shen X (2008) Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Phys Rev Lett 100:156403-1–156403-4Google Scholar
  22. 22.
    Bajoni D (2012) Hybrid light-matter lasers without inversion. J Phys D Appl Phys 45:313001-1–313001-17CrossRefGoogle Scholar
  23. 23.
    Lai YY, Lan YP, Lu TC (2012) High temperature polariton lasing in a strongly coupled ZnO microcavity. Appl Phys Express 5:082801-1–082801-3CrossRefGoogle Scholar
  24. 24.
    Zhang S, Xie W, Dong H, Sun L, Ling Y, Lu J, Duan Y, Shen W, Shen X, Chen Z (2012) Robust exciton–polariton effect in a ZnO whispering gallery microcavity at high temperature. Appl Phys Lett 100:101912-1–101912-4Google Scholar
  25. 25.
    Heo J, Jahangir S, Xiao B, Bhattacharya P (2013) Room temperature polariton lasing from GaN nanowire array clad by dielectric microcavity. Nano Lett 13:2376–2380CrossRefGoogle Scholar
  26. 26.
    Christopoulos S, Hogersthal GBHV, Grundy AJD, Lagoudakis PG, Kavokin AV, Baumberg JJ (2007) Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett 98:126405-1–126405-4CrossRefGoogle Scholar
  27. 27.
    Guillet T, Brimont C (2016) Polariton condensates at room temperature. C R Phys 17:946–956.  https://doi.org/10.1016/j.crhy.2016.07.002 CrossRefGoogle Scholar
  28. 28.
    Coulon PM, Hugues M, Alloing B, Beraudo E, Leroux M, Perez JZ (2012) GaN microwires as optical microcavities: whispering gallery modes vs Fabry–Perot modes. Opt Express 20:18707–18716CrossRefGoogle Scholar
  29. 29.
    Baek H, Hyun JK, Chung K, Oh H, Yi GC (2014) Selective excitation of Fabry–Perot or whispering-gallery mode type lasing in GaN microrods. Appl Phys Lett 105:201108-1–201108-5Google Scholar
  30. 30.
    Sun L, Dong H, Xie W, An Z, Shen X, Chen Z (2010) Quasi-whispering gallery modes of exciton–polaritons in a ZnO microrod. Opt Express 18:15371–15376CrossRefGoogle Scholar
  31. 31.
    Dong H, Liu Y, Sun S, Li J, Zhan J, Chen Z, Zhang L (2016) Geometry dependent evolution of the resonant mode in ZnO elongated hexagonal microcavity. Sci Rep 6:19273-1–19273-8Google Scholar
  32. 32.
    Grundmann M, Dietrich CP (2012) Whispering gallery modes in deformed hexagonal resonators. Phys Status Solidi B 249:871–879CrossRefGoogle Scholar
  33. 33.
    Pan YL, Zhang RK (2003) Highly efficient prism coupling to whispering gallery modes of a square cavity. Appl Phys Lett 82:487–489CrossRefGoogle Scholar
  34. 34.
    Lai CM, Wu HM, Huang PC, Wang SL, Peng LH (2007) Single mode stimulated emission from prism-like gallium nitride submicron cavities. Appl Phys Lett 90:141106-1–141106-3Google Scholar
  35. 35.
    Nobis T, Rahm A, Czekalla C, Lorenz M, Grundmann M (2007) Optical whispering gallery modes in dodecagonal zinc oxide microcrystals. Superlattices Microstruct 42:333–336CrossRefGoogle Scholar
  36. 36.
    Ghosh S, Waltereit P, Brandt O, Grahn HT, Ploog KH (2002) Polarization-dependent spectroscopic study of M-plane GaN on γ-LiAlO2. Appl Phys Lett 80:413–415CrossRefGoogle Scholar
  37. 37.
    Ding M, Zhao D, Yao B, Guo SEZ, Zhang L, Shen D (2012) The ultraviolet laser from individual ZnO microwire with quadrate cross section. Opt Express 13:13657–13662CrossRefGoogle Scholar
  38. 38.
    Sakharov AV, Lundin WV, Krestnikov IL, Semenov VA, Usikov AS, Tsatsulnikov AF, Musikhin YG, Baidakova MV, Alferov ZI, Ledentsov NN, Hoffmann A, Bimberg D (1999) Surface-mode lasing from stacked InGaN insertions in a GaN matrix. Appl Phys Lett 74:3921–3923CrossRefGoogle Scholar
  39. 39.
    Aoude O, Disseix P, Leymarie J, Vasson A, Aujol E, Beaumont B (2004) Femtosecond time-resolved interferences of resonantly excited excitons of bulk GaN. Superlattices Microstruct 36:607–614CrossRefGoogle Scholar
  40. 40.
    Shubina TV, Toropov AA, Pozina G, Bergman JP, Glazov MM, Gippius NA, Disseix P, Leymarie J, Gil B, Monemar B (2011) Excitonic parameters of GaN studied by time of flight spectroscopy. Appl Phys Lett 99:101108-1–101108-3CrossRefGoogle Scholar
  41. 41.
    Byrnes T, Kim NY, Yamamoto Y (2014) Exciton–polariton condensates. Nat Phys 10:803–813CrossRefGoogle Scholar
  42. 42.
    Chichibu SF, Uedono A, Tsukazaki A, Onuma T, Zamfirescu M, Ohtomo A, Kavokin A, Cantwell G, Litton CW, Sota T, Kawasaki M (2005) Exciton–polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO. Semicond Sci Technol 20:S67–S77CrossRefGoogle Scholar
  43. 43.
    Wang Q, Sun L, Zhang B, Chen C, Shen X, Lu W (2016) Direct observation of strong light-exciton coupling in thin WS2 flakes. Opt Express 24:7151–7157CrossRefGoogle Scholar
  44. 44.
    Dai J, Xu CX, Sun XW, Zhang XH (2011) Exciton–polariton microphotoluminiscence and lasing from ZnO whispering-gallery mode microcavities. Appl Phys Lett 98:161110-1–161110-3Google Scholar
  45. 45.
    Duan Q, Xu D, Liu W, Lu J, Zhang L, Wang J, Wang Y, Gu J, Hu T, Xie W, Shen X, Chen Z (2013) Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Appl Phys Lett 103:022103-1–022103-3CrossRefGoogle Scholar
  46. 46.
    Sun L, Sun S, Dong H, Xie W, Richard M, Zhou L, Chen Z, Dang LS and Shen X (2010) Room temperature one-dimensional polariton condensate in a ZnO microwire. http://arxiv.org/abs/1007.4686v1
  47. 47.
    Zhong Y, Wong KS, Zhang W, Look DC (2006) Radiative recombination and ultralong exciton photoluminescence lifetime in GaN freestanding film via two-photon excitation. Appl Phys Lett 89:022108-1–022108-3Google Scholar
  48. 48.
    Wang X, Liao Q, Xu Z, Wu Y, Wei L, Lu X, Fu H (2014) Excitons–polaritons with size tunable coupling strengths in self-assembled organic microresonators. ACS Photonics 1:413–420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSouthern University of Science and TechnologyShenzhenChina
  2. 2.Shenzhen Key Laboratory of Quantum Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  3. 3.State Key Laboratory of Surface Physics, Department of PhysicsFudan UniversityShanghaiChina
  4. 4.School of PhysicsPeking UniversityBeijingChina
  5. 5.School of Physics and Electronic InformationYunnan Normal UniversityKunmingChina

Personalised recommendations