Advertisement

Journal of Materials Science

, Volume 54, Issue 13, pp 9707–9717 | Cite as

One-step hydrothermal synthesis of ultrabright water-soluble silicon nanoparticles for folate-receptor-mediated bioimaging

  • Xiaohui Zheng
  • Dingfang Zhang
  • Zexuan Fan
  • Zusheng Huang
  • Hongju MaoEmail author
  • Yunfei MaEmail author
Materials for life sciences
  • 35 Downloads

Abstract

Fluorescent silicon nanoparticles (SiNPs) exhibiting excellent photostability and colloidal stability and favorable biocompatibility are emerging as novel fluorescent nanoprobes for biological and biomedical imaging. However, studies on the synthesis of highly bright SiNPs and their specific targeted biolabeling are still limited. Herein, we report a facile one-pot hydrothermal approach for the synthesis of ultrabright SiNPs, in which N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) molecules and trisodium citrate acted as silicon precursor and reducing agents, respectively. Remarkably, the prepared SiNPs were small (~ 3.5 nm diameter) and showed ultrahigh photoluminescence quantum yield of 85.2% and long-term stability (in pH range of 4–13 and almost saturated NaCl solution, and at 80 °C). The low cytotoxicity of the resultant SiNPs facilitated conjugation with biomolecules such as folic acid (FA) for bioimaging. The FA-conjugated SiNPs specifically bound receptor-positive HepG2 cells over receptor-negative A549 cells, indicating the potential of these SiNPs as robust bioprobe both in vitro and in vivo.

Notes

Acknowledgements

This research was supported by the Natural Science Foundation of Zhejiang Province (No. LQ18B010003), the Research Start-up Fund (Nos. QTJ16017, QTJ17022) of Wenzhou Medical University, National Natural Science Foundation of China (21702147, 21701194).

Supplementary material

10853_2019_3455_MOESM1_ESM.doc (808 kb)
Supplementary material 1 (DOC 808 kb)

References

  1. 1.
    Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768CrossRefGoogle Scholar
  2. 2.
    Son J, Yi G, Yoo J, Park C, Koo H, Choi HS (2018) Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2018.10.002 Google Scholar
  3. 3.
    Pu C, Qin H, Gao Y, Zhou J, Wang P, Peng X (2017) Synthetic control of exciton behavior in colloidal quantum dots. J Am Chem Soc 139:3302–3311CrossRefGoogle Scholar
  4. 4.
    Qin H, Meng R, Wang N, Peng X (2017) Photoluminescence intermittency and photo-bleaching of single colloidal quantum dot. Adv Mater 29:1606923CrossRefGoogle Scholar
  5. 5.
    Liu Y, Wang P, Wang Y, Zhu Z, Lao F, Liu X, Cong W, Chen C, Gao Y (2013) The influence on cell cycle and cell division by various cadmium-containing quantum dots. Small 9:2440–2451CrossRefGoogle Scholar
  6. 6.
    Howes P, Chandrawati R, Stevens M (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390CrossRefGoogle Scholar
  7. 7.
    Su Y, Ji X, He Y (2016) Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv Mater 28:10567–10574CrossRefGoogle Scholar
  8. 8.
    De Marco ML, Semlali S, Korgel BA, Barois P, Drisko GL, Aymonier C (2018) Silicon-based dielectric metamaterials: focus on the current synthetic challenges. Angew Chem 57:4478–4498CrossRefGoogle Scholar
  9. 9.
    Dasog M, Kehrle J, Rieger B, Veinot JG (2016) Silicon nanocrystals and silicon-polymer hybrids: synthesis, surface engineering, and applications. Angew Chem 55:2322–2339CrossRefGoogle Scholar
  10. 10.
    Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6:38CrossRefGoogle Scholar
  11. 11.
    He Y, Fan C, Lee ST (2010) Silicon nanostructures for bioapplications. Nano Today 5:282–295CrossRefGoogle Scholar
  12. 12.
    He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee S (2011) One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133:14192–14195CrossRefGoogle Scholar
  13. 13.
    Ji X, Peng F, Zhong Y, Su Y, Jiang X, Song C, Yang L, Chu B, Lee S, He Y (2015) Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in vivo cancer therapy. Adv Mater 27:1029–1034CrossRefGoogle Scholar
  14. 14.
    Erogbogbo F, Yong K, Roy I, Hu R, Law W, Zhao W, Ding H, Wu F, Kumar R, Swihart M, Prasad P (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423CrossRefGoogle Scholar
  15. 15.
    Jeong W, Jo S, Park J, Kwon B, Choi Y, Chae A, Park SY, In I (2018) Hydrothermal synthesis of fluorescent silicon nanoparticles using maleic acid as surface-stabilizing ligands. J Mater Sci 53:2443–2452.  https://doi.org/10.1007/s10853-017-1712-3 Google Scholar
  16. 16.
    So W, Li Q, Legaspi C, Redler B, Koe K, Jin R, Peteanu L (2018) Mechanism of ligand-controlled emission in silicon nanoparticles. ACS Nano 12:7232–7238CrossRefGoogle Scholar
  17. 17.
    Zhong Y, Peng F, Wei X, Zhou Y, Wang J, Jiang X, Su Y, Su S, Lee S, He Y (2012) Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew Chem 124:8613–8617CrossRefGoogle Scholar
  18. 18.
    McVey B, Tilley R (2014) Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc Chem Res 47:3045–3051CrossRefGoogle Scholar
  19. 19.
    Mastronardi M, Henderson E, Puzzo D, Ozin G (2012) Small silicon, big opportunities: the development and future of colloidally-stable monodisperse silicon nanocrystals. Adv Mater 24:5890–5898CrossRefGoogle Scholar
  20. 20.
    Cao Z, Peng F, Hu Z, Chu B, Zhong Y, Su Y, He S, He Y (2017) In vitro cellular behaviors and toxicity assays of small-sized fluorescent silicon nanoparticles. Nanoscale 9:7602–7611CrossRefGoogle Scholar
  21. 21.
    Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135:8350–8356CrossRefGoogle Scholar
  22. 22.
    Wang J, Ye DX, Liang GH, Chang J, Kong JL, Chen JY (2014) One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J Mater Chem B 2:4338–4345CrossRefGoogle Scholar
  23. 23.
    Zhong Y, Sun X, Wang S, Peng F, Bao F, Su Y, Li Y, Lee S, He Y (2015) Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 9:5958–5967CrossRefGoogle Scholar
  24. 24.
    Wu S, Zhong Y, Zhou Y, Song B, Chu B, Ji X, Wu Y, Su Y, He Y (2015) Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J Am Chem Soc 137:14726–14732CrossRefGoogle Scholar
  25. 25.
    Wu Y, Zhong Y, Chu B, Sun B, Song B, Wu S, Su Y, He Y (2016) Plant-derived fluorescent silicon nanoparticles featuring excitation wavelength-dependent fluorescence spectra for anti-counterfeiting applications. Chem Commun 52:7047–7050CrossRefGoogle Scholar
  26. 26.
    Wu FG, Zhang X, Kai S, Zhang M, Wang HY, Myers JN, Weng Y, Liu P, Gu N, Chen Z (2015) One-step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80%. Adv Mater Interfaces 2:1500360CrossRefGoogle Scholar
  27. 27.
    Ma S, Chen Y, Feng J, Liu J, Zuo X, Chen X (2016) One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem 88:10474–10481CrossRefGoogle Scholar
  28. 28.
    Nishimura H, Ritchie K, Kasai R, Goto M, Morone N, Sugimura H, Tanaka K, Sase I, Yoshimura A, Nakano Y, Fujiwara T, Kusumi A (2013) Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J Cell Biol 202:967–983CrossRefGoogle Scholar
  29. 29.
    Lai C, Hütter J, Hsu C, Tanaka H, Varela-Aramburu S, De Cola L, Lepenies B, Seeberger P (2016) Analysis of carbohydrate-carbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Lett 16:807–811CrossRefGoogle Scholar
  30. 30.
    Pang J, Su Y, Zhong Y, Peng F, Song B, He Y (2016) Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Res 9:3027–3037CrossRefGoogle Scholar
  31. 31.
    Li S, Jiang J, Yan Y, Wang P, Huang G, Kim NH, Lee JH, He D (2018) Red, green, and blue fluorescent folate-receptor-targeting carbon dots for cervical cancer cellular and tissue imaging. Mater Sci Eng C Mater Biol Appl 93:1054–1063CrossRefGoogle Scholar
  32. 32.
    Bharali D, Lucey D, Jayakumar H, Pudavar H, Prasad P (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371CrossRefGoogle Scholar
  33. 33.
    Deng D, Chen Y, Cao J, Tian J, Qian Z, Achilefu S, Gu Y (2012) High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem Mater 24:3029–3037CrossRefGoogle Scholar
  34. 34.
    Yi Y, Deng J, Zhang Y, Li H, Yao S (2013) Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun 49:612–614CrossRefGoogle Scholar
  35. 35.
    Li Q, Zhang R, Lee S, Niehaus T, Frauenheim T (2008) Amine-capped silicon quantum dots. Appl Phys Lett 92:053107CrossRefGoogle Scholar
  36. 36.
    Ma Y, Li Y, Ma S, Zhong X (2014) Highly bright water-soluble silica coated quantum dots with excellent stability. J Mater Chem B 2:5043–5051CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
  2. 2.State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of ScienceShanghaiChina

Personalised recommendations