Advertisement

Molten-NaNH2 activated carbon cloth with high areal capacitance and exceptional rate stability for flexible asymmetric supercapacitors

  • Shuai Zhou
  • Ke Chen
  • Hongying QuanEmail author
  • Minxing Su
  • Zhen Zeng
  • Menghua Pan
  • Dezhi ChenEmail author
  • Lin Guo
Energy materials
  • 10 Downloads

Abstract

An effective strategy was proposed to obtain molten-NaNH2 activated carbon cloth (MACC) for the manufacture of flexible asymmetric supercapacitors. First, the commercial carbon cloth is oxidized by wet chemical treatment and then activated in molten-NaNH2. The obtained MACC possess many advantages, including moderate oxygen functional groups and nitrogen heteroatoms, excellent wettability, large surface area, high conductivity and excellent mechanical strength and flexibility. As electrode, the MACC demonstrates a high areal capacitance of 744.5 mF cm−2 at a current density of 1 mA cm−2, and 692.0 mF cm−2 at a high current density of 50 mA cm−2 with the capacitance retention as high as 92.93% in 6 M KOH. Furthermore, the flexible asymmetrical supercapacitors are fabricated based on the MACC electrode and Co(OH)2 electrode using aqueous electrolytes. The assembled aqueous supercapacitors can release an areal capacitance of 373.9 mF cm−2 under the current density of 2 mA cm−2, and the corresponding energy density is up to 1.49 mW cm−3 at the power density of 19.45 mW cm−3. The impressive results reveal that the as-prepared MACC is a potential electrode for the flexible supercapacitors.

Notes

Acknowledgements

This work was supported by the Aeronautical Science Foundation of China (Grant No. 2014ZF56021), the Natural Science Foundation (Grant No. 20181BAB206012) of Jiangxi Province, the Foundation (GJJ170579) from the Educational Commission of Jiangxi Province, the Graduate Innovation Foundation (YC2017-S319) of Jiangxi Province, and Postdoctoral Science Foundation of China (2017M610030).

Supplementary material

10853_2019_3453_MOESM1_ESM.docx (9.8 mb)
Supplementary material 1 (DOCX 9986 kb)

References

  1. 1.
    Jiang SL, Shi TL, Zhan XB, Long H, Xi S, Hu H, Tang ZR (2014) High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J Power Sources 272:16–23CrossRefGoogle Scholar
  2. 2.
    Jost K, Perez CR, McDonough JK, Presser V, Heon M, Dion G, Gogotsi Y (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067CrossRefGoogle Scholar
  3. 3.
    Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J (2017) Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8:536CrossRefGoogle Scholar
  4. 4.
    Wang L, Yang H, Liu X, Zeng R, Li M, Huang Y, Hu X (2017) Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem Int Ed 56:1105–1110CrossRefGoogle Scholar
  5. 5.
    Song Y, Liu TY, Yao B, Kou TY, Feng DY, Liu XX, Li Y (2017) Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13:1700067CrossRefGoogle Scholar
  6. 6.
    Chen D, Zhou S, Quan H, Zou R, Gao W, Luo X, Guo L (2018) Tetsubo-like α-Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors. Chem Eng J 341:102–111CrossRefGoogle Scholar
  7. 7.
    Sekhar SC, Nagaraju G, Yu JS (2017) Conductive silver nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 36:58–67CrossRefGoogle Scholar
  8. 8.
    Wang W, Liu W, Zeng Y, Han Y, Yu M, Lu X, Tong Y (2015) A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater 27:3572–3578CrossRefGoogle Scholar
  9. 9.
    Zhang YD, Hu ZA, An YF, Guo BS, An N, Liang YR, Wu HY (2016) High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes. J Power Sources 311:121–129CrossRefGoogle Scholar
  10. 10.
    Chen LF, Yu ZY, Wang JJ, Li QX, Tan ZQ, Zhu YW, Yu SH (2015) Metal-like fluorine-doped beta-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 11:119–128CrossRefGoogle Scholar
  11. 11.
    Saray MT, Hosseini H (2016) Mesoporous MnNiCoO4@MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors. Electrochim Acta 222:505–517CrossRefGoogle Scholar
  12. 12.
    Yu Z-Y, Chen L-F, Yu S-H (2014) Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2:10889–10894CrossRefGoogle Scholar
  13. 13.
    Guo D, Luo YZ, Yu XZ, Li QH, Wang TH (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8:174–182CrossRefGoogle Scholar
  14. 14.
    Xu J, Wang QF, Wang XW, Xiang QY, Hang B, Chen D, Shen GZ (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7:5453–5462CrossRefGoogle Scholar
  15. 15.
    Su C, Xiang JY, Wen FS, Song LZ, Mu CP, Xu DY, Hao CX, Liu ZY (2016) Microwave synthesized three-dimensional hierarchical nanostructure CoS2/MoS2 growth on carbon fiber cloth: a bifunctional electrode for hydrogen evolution reaction and supercapacitor. Electrochim Acta 212:941–949CrossRefGoogle Scholar
  16. 16.
    Ding R, Gao H, Zhang MY, Zhang J, Zhang XT (2015) Controllable synthesis of Ni3−xCoxS4 nanotube arrays with different aspect ratios grown on carbon cloth for high-capacity supercapacitors. RSC Adv 5:48631–48637CrossRefGoogle Scholar
  17. 17.
    Feng DY, Song Y, Huang ZH, Xu XX, Liu XX (2016) Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J Power Sources 324:788–797CrossRefGoogle Scholar
  18. 18.
    Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH (2013) Direct-growth of poly(3,4-ethylenedioxythiophene) nanowires/carbon cloth as hierarchical supercapacitor electrode in neutral aqueous solution. J Power Sources 242:718–724CrossRefGoogle Scholar
  19. 19.
    Huang ZH, Song Y, Feng DY, Sun Z, Sun X, Liu XX (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12:3557–3567CrossRefGoogle Scholar
  20. 20.
    Gu Y-J, Wen W, Wu J-M (2018) Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. J Mater Chem A 6:21078–21086CrossRefGoogle Scholar
  21. 21.
    Wang H, Deng J, Xu C, Chen Y, Xu F, Wang J, Wang Y (2017) Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Mater 7:216–221CrossRefGoogle Scholar
  22. 22.
    Gao SN, Zhu LL, Liu LB, Gao AM, Liao F, Shao MW (2016) Improved energy storage performance based on gamma-ray irradiated activated carbon cloth. Electrochim Acta 191:908–915CrossRefGoogle Scholar
  23. 23.
    Ye D, Yu Y, Tang J, Liu L, Wu Y (2016) Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale 8:10406–10414CrossRefGoogle Scholar
  24. 24.
    Lin S, Zhang C, Wang Z, Dai S, Jin X (2017) Molten-NaNH2 densified graphene with in-plane nanopores and N-doping for compact capacitive energy storage. Adv Energy Mater 7:1700766CrossRefGoogle Scholar
  25. 25.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRefGoogle Scholar
  26. 26.
    Nakayama M, Komine K, Inohara D (2016) Nitrogen-doped carbon cloth for supercapacitors prepared via a hydrothermal process. J Electrochem Soc 163:A2428–A2434CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Wang N, Zhao P, Yao MQ, Hu WC (2017) Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO4 as electrolyte. Compos Part A Appl Sci Manuf 98:58–65CrossRefGoogle Scholar
  28. 28.
    Bo Z, Li C, Yang H, Ostrikov K, Yan J, Cen K (2018) Design of supercapacitor electrodes using molecular dynamics simulations. Nano Micro Lett 10:33CrossRefGoogle Scholar
  29. 29.
    Zhou J, Lian J, Hou L, Zhang J, Gou H, Xia M, Zhao Y, Strobel TA, Tao L, Gao F (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503CrossRefGoogle Scholar
  30. 30.
    Wang W, Quan H, Gao W, Zou R, Chen D, Dong Y, Guo L (2017) N-doped hierarchical porous carbon from waste boat-fruited sterculia seed for high performance supercapacitors. RSC Adv 7:16678–16687CrossRefGoogle Scholar
  31. 31.
    Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26(17):2676–2682CrossRefGoogle Scholar
  32. 32.
    Lin T, Chen W, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513CrossRefGoogle Scholar
  33. 33.
    Sun MH, Huang SZ, Chen LH, Li Y, Yang XY, Yuan ZY, Su BL (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 45:3479–3563CrossRefGoogle Scholar
  34. 34.
    Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58CrossRefGoogle Scholar
  35. 35.
    Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y, Liu J, Hu Z (2015) Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv Mater 27:3541–3545CrossRefGoogle Scholar
  36. 36.
    Milczarek G, Ciszewski A, Stepniak I (2011) Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. J Power Sources 196:7882–7885CrossRefGoogle Scholar
  37. 37.
    Xiao K, Ding LX, Liu G, Chen H, Wang S, Wang H (2016) Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv Mater 28:5997–6002CrossRefGoogle Scholar
  38. 38.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624CrossRefGoogle Scholar
  39. 39.
    Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F (2010) Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48:1731–1737CrossRefGoogle Scholar
  40. 40.
    Vatamanu J, Cao L, Borodin O, Bedrov D, Smith GD (2011) On the influence of surface topography on the electric double layer structure and differential capacitance of graphite/ionic liquid interfaces. J Phys Chem Lett 2:2267–2272CrossRefGoogle Scholar
  41. 41.
    Zheng Z, Retana M, Hu XB, Luna R, Ikuhara YH, Zhou WL (2017) Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl Mater Interfaces 9:16987–16995Google Scholar
  42. 42.
    Lu XF, Chen XY, Zhou W, Tong YX, Li GR (2015) α-Fe2O3@PANI-core shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:14843–14850CrossRefGoogle Scholar
  43. 43.
    Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical EngineeringNanchang Hangkong UniversityNanchangChina
  2. 2.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  3. 3.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina
  4. 4.School of ChemistryBeihang UniversityBeijingChina

Personalised recommendations