Journal of Materials Science

, Volume 54, Issue 11, pp 8063–8095 | Cite as

Influence of varnishing on the vibro-mechanical properties of wood used for violins

  • Sarah L. LämmleinEmail author
  • David Mannes
  • Bart van Damme
  • Ingo Burgert
  • Francis W. M. Schwarze


Violins are varnished to protect them against wear, from changes in relative humidity and to enhance the instrument’s appearance. Furthermore, studies have shown that the application of varnish alters the mechanical and vibrational properties of the wood, respectively, the instrument. Commonly, the varnish impact has been studied by means of changes in stiffness, mass and damping properties of wooden test samples, and by changes in the modal parameters (i.e., eigenfrequency, eigenmode and damping) of top and bottom plates or the complete instrument, respectively. Although these properties determine the final sound quality, their changes have been less frequently studied than the chemical composition of the varnishes from historical instruments. This review focuses on the impact of varnishing on the vibro-mechanical properties of wood used for violins from material to complete instrument level, including the varnish properties and their influence on the moisture sorption. Based on a final discussion of the main impacts and results, an outlook specifies new avenues of research required to better understand the influence of varnish on wood used to make violins.



The work was funded by the COST Project C15.0082.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bucur V (2016) The varnish. In: Handbook of materials for string musical instruments. Springer, Berlin, pp 373–453. Google Scholar
  2. 2.
    Schleske M (1998) On the acoustical properties of violin varnish. Catgut Acoust Soc J 3(6):27–43Google Scholar
  3. 3.
    Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. In: Wood handbook: wood as an engineering material. Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison, WisconsinGoogle Scholar
  4. 4.
    Goli G, Fioravanti M, Busoni S, Carlson B, Mazzanti P (2012) Measurement and modelling of mass and dimensional variations of historic violins subjected to thermo-hygrometric variations: the case study of the Guarneri “del Gesù” violin (1743) known as the “Cannone”. J Cult Herit 13(3):S154–S160Google Scholar
  5. 5.
    Thompson R (1979) The effect of variations in relative humidity on the frequency response of free violin plates. Catgut Acoust Soc Newsl 32:25–27Google Scholar
  6. 6.
    Pérez Martínez MA, Poletti P, Gil Espert L (2011) Vibration testing for the evaluation of the effects of moisture content on the in-plane elastic constants of wood used in musical instruments. In: Vasques CMA, Dias Rodrigues J (eds) Vibration and structural acoustics analysis: current research and related technologies. Springer, Dordrecht, pp 21–57. Google Scholar
  7. 7.
    Echard JP, Lavedrine B (2008) Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J Cult Herit 9(4):420–429. Google Scholar
  8. 8.
    Tai BH (2007) Stradivari’s varnish: a review of scientific findings, part I. J Violin Soc Am VSA Pap 21(1):119–144Google Scholar
  9. 9.
    Tai BH (2007) Stradivari’s varnish: a review of scientific findings, part II. J Violin Soc Am VSA Pap 22(1):60–90Google Scholar
  10. 10.
    Dilworth J (1992) The violin and bow–origins and development. Cambridge University Press, Cambridge. Google Scholar
  11. 11.
    Hill WH, Hill AF, Hill AE (1909) Antonio Stradivari: his life and work (1644–1737). Macmillan and Company, LondonGoogle Scholar
  12. 12.
    Fry G (1904) The varnishes of the Italian Violin-makers of the sixteenth, seventeenth and eighteenth centuries and their influence on tone. Stevens & Sons, San AntonioGoogle Scholar
  13. 13.
    Brandmair B, Greiner S-P, Blot E (2010) Stradivari varnish: scientific analysis of his finishing technique on selected instruments. Himmer AG, Augsburg, p 363Google Scholar
  14. 14.
    Cattani G, Dunbar RLM, Shapira Z (2013) Value creation and knowledge loss: the case of cremonese stringed instruments. Organ Sci 24(3):813–830. Google Scholar
  15. 15.
    Hsieh A (2004) Cremona revisited: the science of violin making. Eng Sci 67(4):28–35Google Scholar
  16. 16.
    Gunji T, Obataya E, Aoyama K (2012) Vibrational properties of harp soundboard with respect to its multi-layered structure. J Wood Sci 58(4):322–326. Google Scholar
  17. 17.
    Minato K, Akiyama T, Yasuda R, Yano H (1995) Dependence of vibrational properties of wood on varnishing during its drying process in violin manufacturing. Holzforsch 49(3):222–226. Google Scholar
  18. 18.
    Haines D (1980) On musical instrument wood Part II. Catgut Acoust Soc Newsl 33:19–23Google Scholar
  19. 19.
    Meinel H (1937) Über Frequenzkurven von Geigen. Akust Z 2:22–33Google Scholar
  20. 20.
    Möckel O (1977) Die Kunst des Geigenbaues, 4th edn. Voigt, HamburgGoogle Scholar
  21. 21.
    Harris N, Sheldon R, Johnston J (2007) A recreation of the particulate ground varnish layer used on many violins made before 1750. J Violin Soc Am VSA Pap 21(1):13Google Scholar
  22. 22.
    Woodhouse J (2014) The acoustics of the violin: a review. Rep Prog Phys 77(11):115901. Google Scholar
  23. 23.
    Roussel A (1973) Grundlagen der Geige und des Geigenbaues: ein Lehr-und Handbuch von Bau und Funktion der Streichinstrumente und ihrer Teile, vol 13. Das MusikinstrumentGoogle Scholar
  24. 24.
    Nagyvary J (1988) The chemistry of a stradivarius. Chem Eng News 66(21):24–31. Google Scholar
  25. 25.
    Holz D (1995) Materialuntersuchungen zum langjährigen akustischen Einfluß einer Lackierung. Musikinstrum 6–7:98–105Google Scholar
  26. 26.
    Schelleng JC (1968) Acoustical effects of violin varnish. J Acoust Soc Am 44(5):1175–1183. Google Scholar
  27. 27.
    Barlow CY, Woodhouse J (1988) Microscopy of wood finishes. Catgut Acoust Soc J 1(1):9–15Google Scholar
  28. 28.
    Chiesa C, Hargrave RG, Pollens S (1998) Giuseppe Guarneri del Gesù. Peter BiddulphGoogle Scholar
  29. 29.
    VERNIX: a databse of varnish recipes found in an ancient textual sources (2018)Google Scholar
  30. 30.
    Padding K (2005) A rational look at the classical Italian coatings. J Violin Soc Am VSA Pap 1(1):11–25Google Scholar
  31. 31.
    Barlow CY, Woodhouse J (1989) Of old wood and varnish: peering into the can of worms. Catgut Acoust Soc J 1(4):2–9Google Scholar
  32. 32.
    Barlow C, Woodhouse J (1989) Firm ground, a detailed analysis of ground layers under the microscope. Strad 100:195–197Google Scholar
  33. 33.
    Baese G (1985) Classic Italian violin varnish: its history, materials, preparation and application. Fort Collins, ColoradoGoogle Scholar
  34. 34.
    Hammerl J, Hammerl R (1991) Violin varnishes: interesting information on resins and basic materials for violin varnish and advice on varnishing. J. & R, HammerlGoogle Scholar
  35. 35.
    Barlow C, Woodhouse J (1990) The influence of varnish on the properties of spruce plates. Proc Inst Acoust 2:765–770Google Scholar
  36. 36.
    Sedighi Gilani M, Pflaum J, Hartmann S, Kaufmann R, Baumgartner M, Schwarze FWMR (2016) Relationship of vibro-mechanical properties and microstructure of wood and varnish interface in string instruments. Appl Phys A Mater 122(4):1–11. Google Scholar
  37. 37.
    Setragno F, Zanoni M, Antonacci F, Sarti A, Malagodi M, Rovetta T, Invernizzi C (2017) Feature-based analysis of the impact of ground coat and varnish on violin tone qualities. Acta Acust United Acust 103(1):80–93Google Scholar
  38. 38.
    Echard JP, Bertrand L, von Bohlen A, Le Ho AS, Paris C, Bellot-Gurlet L, Soulier B, Lattuati-Derieux A, Thao S, Robinet L, Lavedrine B, Vaiedelich S (2010) The nature of the extraordinary finish of Stradivari’s instruments. Angew Chem Int Ed Engl 49(1):197–201. Google Scholar
  39. 39.
    Fiocco G, Rovetta T, Gulmini M, Piccirillo A, Licchelli M, Malagodi M (2017) Spectroscopic analysis to characterize finishing treatments of ancient bowed string instruments. Appl Spectrosc 71(11):2477–2487. Google Scholar
  40. 40.
    Barlow CY, Edwards PP, Millward GR, Raphael R, Rubio DJ (1988) Wood treatment used in Cremonese instruments. Nature 332(6162):313. Google Scholar
  41. 41.
    Nagyvary J (1993) Entzifferung des Stradivari-Tones und allgemeine Geigenforschung in Texas. Musikinstrum 42(6–7):107–111Google Scholar
  42. 42.
    von Bohlen A, Röhrs S, Salomon J (2007) Spatially resolved element analysis of historical violin varnishes by use of μPIXE. Anal Bioanal Chem 387(3):781–790Google Scholar
  43. 43.
    Latour G, Echard J-P, Soulier B, Emond I, Vaiedelich S, Elias M (2009) Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin. Appl Opt 48(33):6485–6491. Google Scholar
  44. 44.
    Pollens S (2009) Recipe for success. Strad 120(1429):34–38Google Scholar
  45. 45.
    Pollens S (2010) Stradivari. Cambridge University Press, CambridgeGoogle Scholar
  46. 46.
    Echard JP, Bertrand L, von Bohlen A, Le Ho AS, Paris C, Bellot-Gurlet L, Soulier B, Lattuati-Derieux A, Thao S, Robinet L, Lavedrine B, Vaiedelich S (2010) The nature of the extraordinary finish of Stradivari’s instruments. Angew Chem Int Ed 49(1):197–201. Google Scholar
  47. 47.
    Bertrand L, Robinet L, Cohen SX, Sandt C, Le Ho AS, Soulier B, Lattuati-Derieux A, Echard JP (2011) Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal Bioanal Chem 399(9):3025–3032. Google Scholar
  48. 48.
    Sodini N, Dreossi D, Chen R, Fioravanti M, Giordano A, Herrestal P, Rigon L, Zanini F (2012) Non-invasive microstructural analysis of bowed stringed instruments with synchrotron radiation X-ray microtomography. J Cult Herit 13(3):S44–S49. Google Scholar
  49. 49.
    Fichera GV, Rovetta T, Fiocco G, Alberti G, Invernizzi C, Licchelli M, Malagodi M (2018) Elemental analysis as statistical preliminary study of historical musical instruments. Microchem J 137:309–317. Google Scholar
  50. 50.
    Fiocco G, Rovetta T, Gulmini M, Piccirillo A, Canevari C, Licchelli M, Malagodi M (2018) Approaches for detecting madder lake in multi-layered coating systems of historical bowed string instruments. Coatings 8(5):171Google Scholar
  51. 51.
    Meyers MA, Chawla KK (2008) Mechanical behavior of materials, 2nd edn. Cambridge University Press, Cambridge. Google Scholar
  52. 52.
    Carfagni M, Lenzi E, Pierini M (1998) The loss factor as a measure of mechanical damping. In: Proceedings-SPIE the international society for optical engineering. SPIE International Society For Optical, pp 580–284Google Scholar
  53. 53.
    Bert CW (1973) Material damping: an introductory review of mathematic measures and experimental technique. J Sound Vib 29(2):129–153Google Scholar
  54. 54.
    Obataya E, Ohno Y, Norimoto M, Tomita B (2001) Effects of oriental lacquer (urushi) coating on the vibrational properties of wood used for the soundboards of musical instruments. Acoust Sci Technol 22(1):27–34Google Scholar
  55. 55.
    Simonnet C, Gibiat V, Halary J-L (2002) Physical and chemical properties of varnishes and their vibrational consequences. PACS Ref 43:75Google Scholar
  56. 56.
    Obataya E, Furuta Y, Ohno Y, Norimoto M, Tomita B (2002) Effects of aging and moisture on the dynamic viscoelastic properties of oriental lacquer (urushi) film. J Appl Polym Sci 83(11):2288–2294. Google Scholar
  57. 57.
    Ono T (1993) Effects of varnishing on acoustical characteristics of wood used for musical instrument soundboards. J Acoust Soc Jpn (E) 14(6):397–407Google Scholar
  58. 58.
    Bucur V (2016) Preservative conservation of musical instruments. In: Handbook of materials for string musical instruments. Springer, Cham, pp 737–791.
  59. 59.
    Bucur V (2006) Acoustics of wood, 2nd edn. Springer, BerlinGoogle Scholar
  60. 60.
    Haines DW (1979) On musical instrument wood. Catgut Acoust Soc Newsl 31:23–32Google Scholar
  61. 61.
    Hearmon RFS (1958) The influence of shear and rotatory inertia on the free flexural vibration of wooden beams. Br J Appl Phys 9(10):381–388. Google Scholar
  62. 62.
    Hutchins M (1991) Effects on spruce test strips of four-year application on four different sealers plus oil varnish. Catgut Acoust Soc J 1(7):11–12Google Scholar
  63. 63.
    Roohnia M, Ghaznavi M, Rostamisan A, Jahanlatib A, Yaghmaeipo A (2013) Traditional varnishes and acoustical properties of wooden soundboards. Sci Int 1(12):401–407. Google Scholar
  64. 64.
    Brémaud I, Karami E, Bardet S, Gilles N, Perego F, Zare S, Gril J (2016) Changes in vibrational properties of coated wood through time from application of varnish, with recipes used in European or Iranian string instruments making. In: Wooden musical instrument conservation and knowledge conference, WoodMusICKGoogle Scholar
  65. 65.
    Karami E (2016) Effets de traitements thermiques modérés et de revêtement sur les propriétés vibratoires des bois d’Epicéa et de Mûrier. Université MontpellierGoogle Scholar
  66. 66.
    Woo Yang Chung SHP (2000) Studies on the vibrational modal analysis of solid woods for making the violin—part 2. The effects of coating materials on the resonant frequency of European spruce and maple. Korea Furnit Soc 11(1):45–52Google Scholar
  67. 67.
    Kluck D (2000) Akustischer Einfluss losemittelarmer, wachshaltiger oder öliger Beschichtungssysteme auf Resonanzholz. Fortschr Akust 26:230–231Google Scholar
  68. 68.
    Meinel H (1957) Regarding the sound quality of violins and a scientific basis for violin construction. J Acoust Soc Am 29(7):817–822. Google Scholar
  69. 69.
    Slaby WE (1997) A test of seven possible fillers as moisture barriers and plate stiffeners. MVA Newsl No. 29 Oct 6–11Google Scholar
  70. 70.
    Bongova M, Urgela S (1999) A study of surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization. In: 11th Slovak–Czech–Polish optical conference on wave and quantum aspects of contemporary optics, pp 103–110.
  71. 71.
    Eichelberger K (2006) Ermittlung von Kriterien zur Beurteilung der Lackqualität im Musikinstrumentenbau und Untersuchung von neuen Lackrezepturen. Inst. f. Musikinstrumentenbau, Techn. Univ. Dresden, Zwota.
  72. 72.
    Stephens H (2015) The effect of finishes on the vibration properties of spruce guitar soundboard wood. Savart J 1(5):1–18.
  73. 73.
    Haines DW (2000) The essential mechanical properties of wood prepared for musical instruments. Catgut Acoust Soc J 4(2):20–32Google Scholar
  74. 74.
    Beare C (1992) Violin expertise: how can we be sure who made what? J Violin Soc Am 12(2):45–66Google Scholar
  75. 75.
    Condax L (1968) Examination of the ground layer of the Italian violin varnish. Catgut Acoust Soc Newsl 10:12–13Google Scholar
  76. 76.
    Schleske M (2002) Empirical tools in contemporary violin making: Part I. Analysis of design, materials, varnish, and normal modes. Catgut Acoust Soc J 4(5):50–64Google Scholar
  77. 77.
    Jansson EV (2002) Acoustics for violin and guitar makers. Kungl. Tekniska högskolan, Department of Speech. Music and HearingGoogle Scholar
  78. 78.
    Hutchins C (1987) Effects of five years of filler and varnish seasonings on the eigenmodes in four pairs of viola plates. Catgut Acoust Soc J 48:25–26Google Scholar
  79. 79.
    Skrodzka EB, Linde BB, Krupa A (2013) Modal parameters of two violins with different varnish layers and subjective evaluation of their sound quality. Arch Acoust 38(1):75–81. Google Scholar
  80. 80.
    Trapasso L (2014) Feature-based analysis of the violin tone quality. Master thesis, Politecnico di MilanoGoogle Scholar
  81. 81.
    Yano H, Minato K (1992) Improvement of the acoustic and hygroscopic properties of wood by a chemical treatment and application to the violin parts. J Acoust Soc Am 92(3):1222–1227. Google Scholar
  82. 82.
    Tatemichi A (1960) Internal friction of multilayer plates. Oyo Buturi 29:802–803Google Scholar
  83. 83.
    Jones RM (2014) Mechanics of composite materials. CRC Press, Boca RatonGoogle Scholar
  84. 84.
    McLennan J (2000) On varnish. J Aust Assoc Musical Instrum Mak XIX 1:16–27Google Scholar
  85. 85.
    Hagenmaier RD, Shaw PE (1991) Permeability of shellac coatings to gases and water vapor. J Agric Food Chem 39(5):825–829Google Scholar
  86. 86.
    Reichel S (2015) Modellierung und Simulation hygro-mechanisch beanspruchter Strukturen aus Holz im Kurz-und Langzeitbereich. Inst. für Statik und Dynamik der Tragwerke, DresdenGoogle Scholar
  87. 87.
    Dionisi Vici P, Mazzanti P, Uzielli L (2006) Mechanical response of wooden boards subjected to humidity step variations: climatic chamber measurements and fitted mathematical models. J Cult Herit 7(1):37–48. Google Scholar
  88. 88.
    Brandao A, Perré P (1996) The” Flying Wood”—a quick test to characterise the drying behaviour of tropical woods. In: 5th international IUFRO wood drying conference, Québec, pp 315–324Google Scholar
  89. 89.
    Viala R, Placet V, Cogan S, Foltête E (2016) Model-based effects screening of stringed instruments. In: Model validation and uncertainty quantification, vol 3. Springer, Berlin, pp 151–157. Google Scholar
  90. 90.
    Brémaud I, Gril J (2015) Effect of transitional moisture change on the vibrational properties of violin-making wood. In: Cost FP1302 WoodMusICK annual conferenceGoogle Scholar
  91. 91.
    Sasaki T, Norimoto M, Yamada T, Rowell R (1988) Effect of moisture on the acoustical properties of wood. Mokuzai Gak 34(10):794–803Google Scholar
  92. 92.
    Hunt D, Gril J (1996) Evidence of a physical ageing phenomenon in wood. J Mater Sci Lett 15(1):80–82Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Swiss Federal Laboratories for Materials Science and Technology (Empa)DübendorfSwitzerland
  2. 2.Swiss Federal Institute of Technology Zürich (ETH Zürich)ZurichSwitzerland
  3. 3.Paul Scherrer Institute (PSI), SwitzerlandVilligenSwitzerland
  4. 4.Swiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland

Personalised recommendations