Advertisement

Exploring steam stability of mesoporous alumina species for improved carbon dioxide sorbent design

  • Matthew E. Potter
  • Jason J. Lee
  • Lalit A. Darunte
  • Christopher W. JonesEmail author
Chemical routes to materials

Abstract

Many different metrics exist to assess the efficacy of a carbon capture sorbent, though one of the pivotal characteristics is stability on regeneration, most notably steam stability, which applies to steam stripping regeneration, a technique proposed for capture of CO2 from humid flue gas. In this study, the steam stability of two different mesoporous alumina species is compared, with an aim to tune the synthesis methodology and the local structure and crystallinity of the samples to create a stable regenerable sorbent. The roles of calcination temperature and aminopolymer impregnation on sorbent stability and structure are also investigated using a wide range of characterization techniques to specifically probe the influence of the alumina support. We show through this study that support choice, and support stability, can play an important role in sorbent design for carbon capture. We highlight that regular crystallinity (such as in γ-alumina) hinders the formation of pseudo-boehmite, allowing a material to retain its CO2 uptake. Further, we show that the addition of aminopolymers (PEI) can facilitate phase changes, however aminopolymers help maintain the mesoporosity of the sample, a key metric for CO2 uptake.

Notes

Funding

This work was supported by the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center, funded by US Department of Energy (US DoE), Office of Science, Basic Energy Sciences (BES) under Award DE-SC0012577.

Supplementary material

10853_2019_3418_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1972 kb)

References

  1. 1.
    Choi S, Gray ML, Jones CW (2011) Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. Chemsuschem 4:628–635CrossRefGoogle Scholar
  2. 2.
    Bonan CB (2008) Forests and climate change: forcings, feedbacks and the climate benefits of forests. Science 320:1444–1449CrossRefGoogle Scholar
  3. 3.
    Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876CrossRefGoogle Scholar
  4. 4.
    IEA (2012) CO2 emissions from fuel combustion highlights. OECD/IEA, ParisGoogle Scholar
  5. 5.
    Fisher JC, Gray M (2015) Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture. Chemsuschem 8:452–455CrossRefGoogle Scholar
  6. 6.
    Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55CrossRefGoogle Scholar
  7. 7.
    Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, Sumida K, Micklash KJ, Kaye SS, Brown CM, Long JR (2013) Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ Sci 6:128–138CrossRefGoogle Scholar
  8. 8.
    Fracaroli AM, Furukawa H, Suzuki M, Dodd M, Okajima S, Gandara F, Reimer JA, Yaghi OM (2014) Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J Am Chem Soc 136:8863–8866CrossRefGoogle Scholar
  9. 9.
    Chai SH, Liu ZM, Huang K, Tan S, Dai S (2016) Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture. Ind Eng Chem Res 55:7355–7361CrossRefGoogle Scholar
  10. 10.
    Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4:3805–3819CrossRefGoogle Scholar
  11. 11.
    Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132:6312–6314CrossRefGoogle Scholar
  12. 12.
    Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces 7:2137–2148CrossRefGoogle Scholar
  13. 13.
    Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167CrossRefGoogle Scholar
  14. 14.
    Sanz R, Calleja G, Arencibia A, Sanz-Perez ES (2015) CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization. Microporous Mesoporous Mater 209:165–171CrossRefGoogle Scholar
  15. 15.
    Wang XX, Ma XL, Schwartz V, Clark JC, Overbury SH, Zhao SQ, Xu XC, Song C (2012) A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions. Phys Chem Chem Phys 14:1485–1492CrossRefGoogle Scholar
  16. 16.
    Son WJ, Choi JS, Ahn WS (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater 113:31–40CrossRefGoogle Scholar
  17. 17.
    Wang D, Ma X, Sentorun-Shalaby C, Song C (2012) Development of carbon-based “molecular basket” sorbent for CO2 capture. Ind Eng Chem Res 51:3048–3057CrossRefGoogle Scholar
  18. 18.
    Heydari-Gorji A, Belmabkhout Y, Sayari A (2011) Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27:12411–12416CrossRefGoogle Scholar
  19. 19.
    Choi W, Min K, Kim C, Ko YS, Jeon J, Seo H, Park YK, Choi M (2016) Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat Commun 7:12640CrossRefGoogle Scholar
  20. 20.
    Niu MY, Yang HM, Zhang XC, Wang YT, Tang AD (2016) Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl Mater Interfaces 8:17312–17320CrossRefGoogle Scholar
  21. 21.
    Bali S, Leisen J, Foo GS, Sievers C, Jones CW (2014) Aminosilanes grafted to basic alumina as CO2 adsorbents—role of grafting conditions on CO2 adsorption properties. Chemsuschem 7:3145–3156CrossRefGoogle Scholar
  22. 22.
    Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL (2005) Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind Eng Chem Res 44:3099–3105CrossRefGoogle Scholar
  23. 23.
    Zelenak V, Skrinska M, Zukal A, Cejka J (2018) Carbon dioxide adsorption over amine modified silica: effect of amine basicity and entropy factor on isosteric heats of adsorption. Chem Eng J 348:327–337CrossRefGoogle Scholar
  24. 24.
    Drese JH, Choi S, Lively RP, Koros WJ, Fauth DJ, Gray ML, Jones CW (2009) Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents. Adv Funct Mater 19:3821–3832CrossRefGoogle Scholar
  25. 25.
    Wilfong WC, Kail BW, Jones CW, Pacheco C, Gray ML (2016) Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: a new class 4 category. ACS Appl Mater Interfaces 8:12780–12791CrossRefGoogle Scholar
  26. 26.
    Fujiki J, Chowdbury FA, Yamada H, Yogo K (2017) Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent. Chem Eng J 307:273–282CrossRefGoogle Scholar
  27. 27.
    Hammache S, Hoffman JS, Gray ML, Fauth DJ, Howard BH, Pennline HW (2013) Comprehensive study of the impact of steam on polyethyleneimine on silica for CO2 capture. Energy Fuels 27:6899–6905CrossRefGoogle Scholar
  28. 28.
    Li KM, Jiang JG, Tian SC, Yan F, Chen XJ (2015) Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO2 capture. J Mater Chem A 3:2166–2175CrossRefGoogle Scholar
  29. 29.
    Zhao W, Zhang Z, Li Z, Cai N (2013) Investigation of thermal stability and continuous CO2 capture from flue gases with supported amine sorbent. Ind Eng Chem Res 52:2084–2093CrossRefGoogle Scholar
  30. 30.
    Sakwa-Novak MA, Yoo CJ, Tan S, Rashidi F, Jones CW (2016) Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air. Chemsuschem 9:1859–1868CrossRefGoogle Scholar
  31. 31.
    Ebner AD, Gray ML, Chisholm NG, Black QT, Mumford DD, Nicholson MA, Ritter JA (2011) Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption. Ind Eng Chem Res 50:5634–5641CrossRefGoogle Scholar
  32. 32.
    Mane S, Gao ZY, Li YX, Liu XQ, Sun LB (2018) Rational fabrication of polyethylenimine-linked microbeads for selective CO2 capture. Ind Eng Chem Res 57:250–258CrossRefGoogle Scholar
  33. 33.
    Zhou Z, Balijepalli SK, Nguyen-Sorenson AHT, Anderson CM, Park JL, Stowers KJ (2018) Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture. Energy Fuels 32:11701–11709CrossRefGoogle Scholar
  34. 34.
    Sakwa-Novak MA, Jones CW (2014) Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air. ACS Appl Mater Interfaces 6:9245–9255CrossRefGoogle Scholar
  35. 35.
    Gunathilake C, Gangoda M, Jaroniec M (2016) Mesoporous alumina with amidoxime groups for CO2 sorption at ambient and elevated temperatures. Ind Eng Chem Res 55:5598–5607CrossRefGoogle Scholar
  36. 36.
    Li W, Bollini P, Didas SA, Choi S, Drese JH, Jones CW (2010) Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Appl Mater Interfaces 2:3363–3372CrossRefGoogle Scholar
  37. 37.
    Isenberg M, Chaung SSC (2013) The nature of adsorbed CO2 and amine sites on the immobilized amine sorbents regenerated by industrial boiler steam. Ind Eng Chem Res 52:12530–12539CrossRefGoogle Scholar
  38. 38.
    Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116:504–512CrossRefGoogle Scholar
  39. 39.
    Li W, Choi S, Drese JH, Hornbostel M, Krishnan G, Eisenberger PM, Jones CW (2010) Steam-stripping for regeneration of supported amine-based CO2 adsorbents. Chemsuschem 3:899–903CrossRefGoogle Scholar
  40. 40.
    Chaikittisilp W, Kim HJ, Jones CW (2011) Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 25:5528–5537CrossRefGoogle Scholar
  41. 41.
    Sandhu NK, Pudasainee D, Sarkar P, Gupta R (2016) Steam regeneration of polyethylenimine-impregnated silica sorbent for postcombustion CO2 capture: a multicyclic study. Ind Eng Chem Res 55:2210–2220CrossRefGoogle Scholar
  42. 42.
    Fayaz M, Sayari A (2017) Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica. ACS Appl Mater Interfaces 9:43747–43754CrossRefGoogle Scholar
  43. 43.
    Wilfong WC, Kail BW, Gray ML (2015) Rapid screening of immobilized amine CO2 sorbents for steam stability by their direct contact with liquid H2O. Chemsuschem 8:2041–2045CrossRefGoogle Scholar
  44. 44.
    Min K, Choi W, Choi M (2017) Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. Chemsuschem 10:2518–2526CrossRefGoogle Scholar
  45. 45.
    Potter ME, Cho KM, Lee JJ, Jones CW (2017) Role of alumina basicity in CO2 uptake in 3-aminopropylsilyl-grafted alumina adsorbents. Chemsuschem 10:2192–2201CrossRefGoogle Scholar
  46. 46.
    Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL (2016) Phenomena affecting catalytic reactions at solid–liquid interfaces. ACS Catal 6:8286–8307CrossRefGoogle Scholar
  47. 47.
    Ciftci A, Peng B, Jentys A, Lercher JA, Hensen EJM (2012) Support effects in the aqueous phase reforming of glycerol over supported platinum catalysts. Appl Catal A Gen 431–432:113–119CrossRefGoogle Scholar
  48. 48.
    Lukens WW, Schmidt-Winkel P, Zhao D, Feng J, Stucky GD (1999) Evaluating pore sizes in mesoporous materials: a simplified standard adsorption method and a simplified Broekhoff−de Boer method. Langmuir 15:5403–5409CrossRefGoogle Scholar
  49. 49.
    Bali S, Chen TT, Chaikittisilp W, Jones CW (2013) Oxidative stability of amino polymer-alumina hybrid adsorbents for carbon dioxide capture. Energy Fuels 27:1547–1554CrossRefGoogle Scholar
  50. 50.
    Turek AM, Wachs IE, DeCanio E (1992) Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study. J Phys Chem 96:5000–5007CrossRefGoogle Scholar
  51. 51.
    Aravind PR, Mukundan P, Pillai PK, Warrier KGK (2006) Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous Mesoporous Mater 96:14–20CrossRefGoogle Scholar
  52. 52.
    Digne M, Sautet P, Raybaud P, Euzen P, Toulhaut H (2004) Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J Catal 226:54–68CrossRefGoogle Scholar
  53. 53.
    Ravenelle RM, Copeland JR, Van Pelt AH, Crittenden JC, Sievers C (2012) Stability of Pt/γ-Al2O3 catalysts in model biomass solutions. Top Catal 55:162–174CrossRefGoogle Scholar
  54. 54.
    Ravenelle RM, Copeland JR, Kim WG, Crittenden JC, Sievers C (2011) Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal 1:552–561CrossRefGoogle Scholar
  55. 55.
    Koichumanova K, Vikla AKK, de Vlieger DJM, Seshan K, Mojet BL, Lefferts L (2013) Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen. Chemsuschem 6:1717–1723CrossRefGoogle Scholar
  56. 56.
    Réocreux R, Jiang T, Iannuzzi M, Michel C, Sautet P (2018) Structuration and dynamics of interfacial liquid water at hydrated γ-alumina determined by ab initio molecular simulations: implications for nanoparticle stability. ACS Appl Nano Mater 1:191–199CrossRefGoogle Scholar
  57. 57.
    Holewinski A, Sakwa-Novak MA, Jones CW (2015) Linking CO2 sorption performance to polymer morphology in aminopolymer/silica composites through neutron scattering. J Am Chem Soc 137:11749–11759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of ChemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations