Advertisement

Facile synthesis of petal-like nanocrystalline Co3O4 film using direct high-temperature oxidation

  • Siru Ren
  • Yukun Guo
  • Longlong Ju
  • Han Xiao
  • Anmin HuEmail author
  • Ming Li
Metals

Abstract

A novel petal-like cobalt oxide (PCO) structure has been fabricated by electrodeposition of the nanostructured Co film followed by elevated-temperature oxidation. The structure exhibits monodisperse petal-like cobalt oxide nanosheets and core–shell structure with oxide as shell and metal as core. The morphology was studied by changing the surface structure of the initial Co film and oxidation temperature, finding that the PCO could only be obtained by calcining the arched Co film at 500 °C. The growth mechanism is briefly discussed based on the Caberra–Mott theory. The electrochemical behaviour analysis indicates the prepared material’s potential as electrode materials in supercapacitors.

Notes

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (61176097) and (61376107). We thank the Instrumental Analysis Center of Shanghai Jiao Tong University, for the use of the SEM equipment.

References

  1. 1.
    Liu Y, Zhang X (2013) Surfactant-assisted microemulsion approach of chrysanthemum-like Co3O4 microspheres and their application in lithium-ion battery. Solid State Ion 231:63–68CrossRefGoogle Scholar
  2. 2.
    Xiong S, Yuan C, Zhang X, Xi B, Qian Y (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem Eur J 15(21):5320–5326CrossRefGoogle Scholar
  3. 3.
    Han L, Yang DP, Liu A (2015) Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens Bioelectron 63:145–152CrossRefGoogle Scholar
  4. 4.
    Salek G, Alphonse P, Dufour P, Guillemet-Fritsch S, Tenailleau C (2014) Low-temperature carbon monoxide and propane total oxidation by nanocrystalline cobalt oxides. Appl Catal B 147:1–7CrossRefGoogle Scholar
  5. 5.
    Zhang G, Li H, Zhao F, Hu H, Huang H, Li H, Han X, Liu R, Dong H, Liu Y, Kang Z (2013) A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Trans 42(26):9423–9427CrossRefGoogle Scholar
  6. 6.
    Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252(20):7487–7492CrossRefGoogle Scholar
  7. 7.
    Schmid S, Hausbrand R, Jaegermann W (2014) Cobalt oxide thin film low pressure metal-organic chemical vapor deposition. Thin Solid Films 567:8–13CrossRefGoogle Scholar
  8. 8.
    Yang H, Hu Y, Zhang X, Qiu G (2004) Mechanochemical synthesis of cobalt oxide nanoparticles. Mater Lett 58(3–4):387–389CrossRefGoogle Scholar
  9. 9.
    Tong G-X, Liu F-T, Wu W-H, Tong C-L, Qiao R, Guo H-C (2014) Facile bubble-assisted evaporation-induced assembly of high-density arrays of Co3O4 nano/microlotus leaves: fluorescent properties, drug delivery, and biocompatibility. CrystEngComm 16(9):1645–1651CrossRefGoogle Scholar
  10. 10.
    Xu J, Wu J, Luo L, Chen X, Qin H, Dravid V, Mi S, Jia C (2015) Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. J Power Sour 274:816–822CrossRefGoogle Scholar
  11. 11.
    Yada M, Inoue Y, Koikawa M, Torikai T, Watari T (2012) Synthesis and magnetic property of cobalt hydroxide carbonate and cobalt oxide nanowires. CrystEngComm 14(21):7374–7381CrossRefGoogle Scholar
  12. 12.
    Liang H, Raitano JM, Zhang L, Chan SW (2009) Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem Commun 48:7569–7571CrossRefGoogle Scholar
  13. 13.
    Gholamrezaei S, Salavati-Niasari M, Hadadzadeh H, Behnamfar MT, Saberyan K (2014) Preparation of honeycomb magnetic Co3O4 Nanostructures from trans, trans, trans-[Co(py)2(H2O)2(SCN)2] as a new precursor. Synth React Inorg Met Org Nanomet Chem 45(1):74–79CrossRefGoogle Scholar
  14. 14.
    Yu YX, Liu XY, Xia XH, Xiong QQ, Wang XL, Gu CD, Tu JP (2014) Net-structured Co3O4/C nanosheet array with enhanced electrochemical performance toward lithium storage. Mater Res Bull 51:112–118CrossRefGoogle Scholar
  15. 15.
    Choudhary RK, Mishra P, Kain V (2017) Pulse DC electrodeposition of Zn–Ni–Co coatings. Surf Eng 33(2):90–93CrossRefGoogle Scholar
  16. 16.
    Ebrahim-Ghajari M, Allahkaram S, Mahdavi S (2015) Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings. Surf Eng 31(3):251–257CrossRefGoogle Scholar
  17. 17.
    Hang T, Hu A, Li M, Mao D (2010) Structural control of a cobalt nanocone array grown by directional electrodeposition. CrystEngComm 12(10):2799–2802CrossRefGoogle Scholar
  18. 18.
    Xiao H, Hu A, Hang T, Li M (2015) Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness. Appl Surf Sci 324:319–323CrossRefGoogle Scholar
  19. 19.
    Cheng G (2014) Facile synthesis of leaf-like cobalt microstructures at low temperature. Micro Nano Lett. 9(5):312–314CrossRefGoogle Scholar
  20. 20.
    Wang H, Hu A, Li M (2014) Synthesis of hierarchical mushroom-like cobalt nanostructures based on one-step galvanostatic electrochemical deposition. CrystEngComm 16(34):8015–8019CrossRefGoogle Scholar
  21. 21.
    Zhang D, Li X, Guo X, Lai C (2014) Fabrication of cobalt oxide (Co3O4) coating by electrophoretic deposition. Mater Lett 126:211–213CrossRefGoogle Scholar
  22. 22.
    Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk DA, Park S-M, Fujishima A (2003) Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J Electrochem Soc 150(7):E337–E341CrossRefGoogle Scholar
  23. 23.
    Suryanto BHR, Lu X, Chan HM, Zhao C (2013) Controlled electrodeposition of cobalt oxides from protic ionic liquids for electrocatalytic water oxidation. RSC Adv 3(43):20936–20942CrossRefGoogle Scholar
  24. 24.
    Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J Mol Catal A Chem 281(1–2):49–58CrossRefGoogle Scholar
  25. 25.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730CrossRefGoogle Scholar
  26. 26.
    Caberra N, Mott NF (1948) Theory of the Oxidation of Metals. Rep Prog Phys 12:163–184CrossRefGoogle Scholar
  27. 27.
    Sadasivan S, Bellabarba RM, Tooze RP (2013) Size dependent reduction-oxidation-reduction behaviour of cobalt oxide nanocrystals. Nanoscale 5(22):11139–11146CrossRefGoogle Scholar
  28. 28.
    Collins LE, Heavens OS (1957) The epitaxial growth and oxidation of nickel, cobalt and iron on rocksalt. Proc Phys Soc Sect B 70(3):265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Siru Ren
    • 1
  • Yukun Guo
    • 1
    • 2
  • Longlong Ju
    • 1
  • Han Xiao
    • 1
  • Anmin Hu
    • 1
    Email author
  • Ming Li
    • 1
  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations