Advertisement

Analysis of theoretical and experimental X-ray diffraction patterns for distinct mordenite frameworks

  • Perla Sánchez-López
  • Joel Antúnez-GarcíaEmail author
  • Sergio Fuentes-Moyado
  • Donald H. Galván
  • Vitalii Petranovskii
  • Fernando Chávez-Rivas
Computation and theory
  • 12 Downloads

Abstract

Experimental and theoretical XRD patterns of mordenite frameworks were correlated in this work. The experimental XRD analysis showed that the incorporation of Ag and Fe ions in mordenite modified the intensity of peaks in the diffraction patterns. For theoretical studies, two framework models of mordenite (MOR6 and MOR7) were used. Theoretical results conducted through DFT computational simulations were able to predict correctly the angular positions of the experimental peaks observed in XRD patterns. These theoretical results showed that the ion exchange of \({\hbox {Na}^{+}}\) by \({\hbox {Ag}^{+}}\) cations in the zeolitic framework leads to a decrease in intensity of XRD peaks {2 0 0}, {0 2 0} and {1 5 0}, similar to observed experimentally. This is caused by local structural rearrangements produced by the ion exchange. For \({\hbox {Fe}}\) incorporation in zeolite, two options were considered theoretically: ion exchange and isomorphous substitution of \({\hbox {Al}^{3+}}\) in tetrahedral positions.

Notes

Acknowledgements

This research was supported by the project SENER-CONACyT 117373, UNAM PAPIIT IN107817 Grant and RFBR-CITMA Project No. 18-53-34004 and through the basic-science proposal A1-S-33492. We also want to thank for the supercomputing time provided by the UNAM through the project LANCAD-UNAM-DGTIC-041 and to thank E. Aparicio, E. Smolentseva and E. Flores for their valuable technical assistance.

References

  1. 1.
    Martínez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580CrossRefGoogle Scholar
  2. 2.
    Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R (2018) Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal 8:770–784CrossRefGoogle Scholar
  3. 3.
    Bogdanchikova NE, Petranovskii V, Machorro RM, Yoshihiro S, Soto VM, Fuentes SM (1999) Stability of silver clusters in mordenites with different SiO2/Al2O3 molar ratio. Appl Surf Sci 150:58–64CrossRefGoogle Scholar
  4. 4.
    Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 6337:523–527CrossRefGoogle Scholar
  5. 5.
    De-La-Torre U, Pereda-Ayo B, Moliner M, Gonzlez-Velasco JR, Corma A (2016) Cu-zeolite catalysts for \({\hbox{NO}_{\rm x}}\) removal by selective catalytic reduction with NH3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems. Appl Catal B 187:419–427CrossRefGoogle Scholar
  6. 6.
    Kumon A, Abidin Z, Matsue N (2017) Synthesis of iron substituted zeolite with Na-P1 framework. J Porous Mater 24:1061–1068CrossRefGoogle Scholar
  7. 7.
    Naraki Y, Ariga K, Oka H, Kurashige H, Sano T (2018) An isomorphously substituted Fe-BEA zeolite with high Fe content: facile synthesis and characterization. J Nanosci Nanotechnol 18:11–19CrossRefGoogle Scholar
  8. 8.
    van Bokhoven JA, Lamberti C (2014) Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy. J Nanosci Nanotechnol 277–278:275–290Google Scholar
  9. 9.
    Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA (2010) Transition-metal ions in zeolites: coordination and activation of oxygen. Inorg Chem 49:3573–3583CrossRefGoogle Scholar
  10. 10.
    Abelló S, Montané D (2011) Exploring Iron based multifunctional catalysts for Fischer–Tropsch synthesis: a review. ChemSusChem 4:1538–1556CrossRefGoogle Scholar
  11. 11.
    Pereira MC, Oliveira LC, Murad E (2012) Iron oxide catalysts: Fenton and Fenton-like reactions—a review. Chem Mater 47:285Google Scholar
  12. 12.
    Dehghan M, Anbia M (2017) Zeolites for adsorptive desulfurization from fuels: a review. Fuel Process Technol 167:99–116CrossRefGoogle Scholar
  13. 13.
    Pidko EA, Hensen EJM, van Santen RA (2012) Self-organization of extraframework cations in zeolites. Proc R Soc A 2143:2070–2086CrossRefGoogle Scholar
  14. 14.
    Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Phys Chem Chem Phys 9:3483–3499CrossRefGoogle Scholar
  15. 15.
    van Santen RA, Tranca I, Hensen EJ (2015) Theory of surface chemistry and reactivity of reducible oxides. Catal Today 244:63–84CrossRefGoogle Scholar
  16. 16.
    Vilhena FS, Serra RM, Boix AV, Ferreira GB, Carneiro JWM (2016) DFT study of Li+ and Na+ positions in mordenites and hydration stability. Comp Theor Chem 1091:115–121CrossRefGoogle Scholar
  17. 17.
    Yuan SP, Wang JG, Li YW, Jiao H (2004) Density functional investigations into the siting of Fe and the acidic properties of isomorphously substituted mordenite by B, Al, Ga and Fe. J Mol Struct 674:267–274CrossRefGoogle Scholar
  18. 18.
    Chibani S, Chebbi M, Lebegue S, Bucko T, Badawi M (2016) A DFT investigation of the adsorption of iodine compounds and water in H, Na, Ag, and Cu mordenite. J Chem Phys 144:244705CrossRefGoogle Scholar
  19. 19.
    Löwenstein S (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39:92–96Google Scholar
  20. 20.
    Demuth T, Hafner J, Benco L, Toulhoat H (2000) Structural and acidic properties of mordenite. An ab initio density-functional study. J Phys Chem B 104:4593–4607CrossRefGoogle Scholar
  21. 21.
    Derouane EG, Fripiat JG (1983) In: Proceedings of the sixth international zeolite conference, p 717Google Scholar
  22. 22.
    Alberti A, Davoli P, Vezzalini G (1986) The distribution of aluminum in the tetrahedra of silicates and aluminates. Z Krist 175:249Google Scholar
  23. 23.
    Chen F, Zhang L, Feng G, Wang X, Zhang R, Liu J (2018) Trivalent ions modification for high-silica mordenite: a first principles study. Appl Surf Sci 433:627–638CrossRefGoogle Scholar
  24. 24.
    Antúnez-García J, Galván DH, Posada-Amarillas A, Petranovskii V (2014) A theoretical study of Cu clusters in siliceous erionite. J Mol Struct 1059:232–238CrossRefGoogle Scholar
  25. 25.
    Antúnez-García J, Galván DH, Petranovskii V, Posada-Amarillas A (2015) A DFT study of copper-oxide clusters embedded in dry and water-immersed siliceous mordenite. Comput Mater Sci 106:140–148CrossRefGoogle Scholar
  26. 26.
    Antúnez-García J, Posada-Amarillas A, Galván DH, Smolentseva E, Petranovskii V, Fuentes Moyado S (2016) DFT study of composites formed by M2 metallic clusters (M = Ni, Cu, Fe and Cu. RSC Adv 6:79160CrossRefGoogle Scholar
  27. 27.
    Baerlocher Ch, McCusker LB, Database of zeolite structures. http://www.iza-structure.org/databases/. Accessed 18 Jan 2018
  28. 28.
    Alberti A (1997) Location of Brønsted sites in mordenite. Zeolites 19:411–415CrossRefGoogle Scholar
  29. 29.
    Benco L, Bucko T, Hafner J, Toulhoat H (2005) Periodic DFT calculations of the stability of Al/Si substitutions and extraframework \({\hbox{Zn}^{2+}}\) cations in mordenite and reaction pathway for the dissociation of H2 and CH4. J Phys Chem B 109:20361–20369CrossRefGoogle Scholar
  30. 30.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  31. 31.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  32. 32.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  33. 33.
    Baroni S, dal Corso A, de Gironcoli S, Giannozzi P. http://www.pwscf.org. Accessed 18 March 2018
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  35. 35.
    Vanderbilt TG (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  36. 36.
    PowderCell. ftp://ftp.bam.de/PowderCell. Accessed 1 Aug 2018
  37. 37.
    Mittemeijer J, Welzel U (2011) Modern diffraction methods. Wiley-VCH, New YorkGoogle Scholar
  38. 38.
    Kriegner D, Matěj Z, Kužel R, Holý V (2015) Powder diffraction in Bragg–Brentano geometry with straight linear detectors. J Appl Cryst 48:613–618CrossRefGoogle Scholar
  39. 39.
    Boron P, Chmielarz L, Gurgul J, Latka K, Gil B, Marszaek B, Dzwigaj S (2015) Influence of iron state and acidity of zeolites on the catalytic activity of FeHBEA, FeHZSM-5 and FeHMOR in SCR of NO with NH3 and N2O decomposition. Micropor Mesopor Mater 203:73–85CrossRefGoogle Scholar
  40. 40.
    van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45:297–319CrossRefGoogle Scholar
  41. 41.
    Zhukov M, Shelyapina M, Zvereva A, Petranovskii Efimov AV (2018) Microwave assisted versus convention \({\hbox{Cu}^{2+}}\) exchange in mordenite. Micropor Mesopor Mater 259:220–228CrossRefGoogle Scholar
  42. 42.
    Devautour S, Abdoulaye A, Giuntini JC, Henn F (2001) Localization of water molecules and sodium ions in Na-mordenite, by thermally stimulated current measurement. J Phys Chem B 105:9297–9301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  2. 2.Escuela Superior de Física y MatemáticasInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations