Controlled synthesis of multi-branched gold nanodendrites by dynamic microfluidic flow system

  • Semih Calamak
  • Kezban UlubayramEmail author
Chemical routes to materials


The synthesis of gold nanostructures with unique architectures has attracted a great deal of attention because of their architecture-dependent sensing, optical, and electrical properties. Gold nanodendrites with a tailored morphology have unique properties due to their enhanced surface areas caused by nanoscale branches. Although gold nanodendrites have been synthesized by many different methods, controllable and high-yield synthesis of gold nanodendrites remains a challenge. Here, for the first time, we show that multi-branched gold nanodendrite synthesis can be controlled using a dynamic microfluidic flow system with high yield and fluid dynamics that control the branching structure of the nanodentrites. The study shows that the architecture of the gold nanodendrites mainly depends on synthesis conditions such as flow dynamics, HAuCl4 concentration, and reaction time. Dendrites grew faster when the flow rate reached 3 µL min−1. We further show that by using microfluidic-assisted synthesis, simple and rapid gold nanodendrite length tuning (0.7 cm) is possible with a threefold branching and textured structure. It is shown that the growth of gold nanodendrites is significantly enhanced (1.7 times faster) under flow conditions in the microfluidic channel. This bottom-up method reduces undesirable effects related to the poor control of static growth and increased reproducibility. Such highly controllable and inexpensive microfluidic flow systems could potentially be used to fabricate high-yield gold nanodendrites for bioelectronics and sensing applications.


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3403_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2393 kb)


  1. 1.
    Piella J, Bastús NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075CrossRefGoogle Scholar
  2. 2.
    Helmi S, Ziegler C, Kauert DJ, Seidel R (2014) Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett 14:6693–6698CrossRefGoogle Scholar
  3. 3.
    Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I (2013) Size tunable Au@ Ag core–shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir 29:15076–15082CrossRefGoogle Scholar
  4. 4.
    Demir US, Shahbazi R, Calamak S, Ozturk S, Gultekinoglu M, Ulubayram K (2018) Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation. J Biomed Mater Res Part A 106:1604–1613CrossRefGoogle Scholar
  5. 5.
    Shahbazi R, Asik E, Kahraman N, Turk M, Ozpolat B, Ulubayram K (2017) Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer. Nanomedicine 12:1961–1973CrossRefGoogle Scholar
  6. 6.
    Zhang A, Lieber CM (2015) Nano-bioelectronics. Chem Rev 116:215–257CrossRefGoogle Scholar
  7. 7.
    Inci F, Filippini C, Baday M, Ozen MO, Calamak S, Durmus NG et al (2015) Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proc Natl Acad Sci 112:E4354–E4363CrossRefGoogle Scholar
  8. 8.
    Baday M, Calamak S, Durmus NG, Davis RW, Steinmetz LM, Demirci U (2016) Integrating cell phone imaging with magnetic levitation (i-LEV) for label-free blood analysis at the point-of-living. Small 12:1222–1229CrossRefGoogle Scholar
  9. 9.
    Abdellatif M, Abdelrasoul G, Scarpellini A, Marras S, Diaspro A (2015) Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics. J Colloid Interface Sci 458:266–272CrossRefGoogle Scholar
  10. 10.
    Uematsu T, Baba M, Oshima Y, Tsuda T, Torimoto T, Kuwabata S (2014) Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids. J Am Chem Soc 136:13789–13797CrossRefGoogle Scholar
  11. 11.
    Qin Y, Song Y, Sun N, Zhao N, Li M, Qi L (2008) Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem Mater 20:3965–3972CrossRefGoogle Scholar
  12. 12.
    Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665CrossRefGoogle Scholar
  13. 13.
    Huang J, Han X, Wang D, Liu D, You T (2013) Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation. ACS Appl Mater Interfaces 5:9148–9154CrossRefGoogle Scholar
  14. 14.
    Ndokoye P, Li X, Zhao Q, Li T, Tade MO, Liu S (2016) Gold nanostars: benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity. J Colloid Interface Sci 462:341–350CrossRefGoogle Scholar
  15. 15.
    Brankovic S, Wang J, Adžić R (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRefGoogle Scholar
  16. 16.
    Brankovic S, McBreen J, Adžić R (2001) Spontaneous deposition of Pd on a Ru (0001) surface. Surf Sci 479:L363–L368CrossRefGoogle Scholar
  17. 17.
    Calamak S, Aksoy EA, Erdogdu C, Sagıroglu M, Ulubayram K (2015) Silver nanoparticle containing silk fibroin bionanotextiles. J Nanopart Res 17:87CrossRefGoogle Scholar
  18. 18.
    Van Brussel M, Kokkinidis G, Vandendael I, Buess-Herman C (2002) High performance gold-supported platinum electrocatalyst for oxygen reduction. Electrochem Commun 4:808–813CrossRefGoogle Scholar
  19. 19.
    Van Brussel M, Kokkinidis G, Hubin A, Buess-Herman C (2003) Oxygen reduction at platinum modified gold electrodes. Electrochim Acta 48:3909–3919CrossRefGoogle Scholar
  20. 20.
    Passoni L, Criante L, Fumagalli F, Scotognella F, Lanzani G, Di Fonzo F (2014) Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano 8:12167–12174CrossRefGoogle Scholar
  21. 21.
    Calamak S, Aksoy EA, Ertas N, Erdogdu C, Sagıroglu M, Ulubayram K (2015) Ag/silk fibroin nanofibers: effect of fibroin morphology on Ag + release and antibacterial activity. Eur Polym J 67:99–112CrossRefGoogle Scholar
  22. 22.
    Wang J, Jin M, Gong Y, Li H, Wu S, Zhang Z et al (2017) Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance. Lab Chip 17:1970–1979CrossRefGoogle Scholar
  23. 23.
    Puigmartí-Luis J (2014) Microfluidic platforms: a mainstream technology for the preparation of crystals. Chem Soc Rev 43:2253–2271CrossRefGoogle Scholar
  24. 24.
    Lazarus LL, Yang AS-J, Chu S, Brutchey RL, Malmstadt N (2010) Flow-focused synthesis of monodisperse gold nanoparticles using ionic liquids on a microfluidic platform. Lab Chip 10:3377–3379CrossRefGoogle Scholar
  25. 25.
    Huang H, Du Toit H, Besenhard MO, Ben-Jaber S, Dobson P, Parkin I, et al (2018) Continuous flow synthesis of ultrasmall gold nanoparticles in a microreactor using trisodium citrate and their SERS performance. Chem Eng Sci 189:422–430CrossRefGoogle Scholar
  26. 26.
    Fu Q, Ran G, Xu W (2015) A microfluidic-based controllable synthesis of rolled or rigid ultrathin gold nanoplates. RSC Adv 5:37512–37516CrossRefGoogle Scholar
  27. 27.
    Kumar DR, Kulkarni A, Prasad B (2014) Microfluidic platform for continuous flow synthesis of triangular gold nanoplates. Colloids Surf A 443:149–155CrossRefGoogle Scholar
  28. 28.
    Çalamak S, Erdoğdu C, Özalp M, Ulubayram K (2014) Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng C 43:11–20CrossRefGoogle Scholar
  29. 29.
    Mutlu G, Calamak S, Ulubayram K, Guven E (2018) Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J Drug Deliv Sci Technol 43:185–193CrossRefGoogle Scholar
  30. 30.
    Kara F, Aksoy EA, Calamak S, Hasirci N, Aksoy S (2016) Immobilization of heparin on chitosan-grafted polyurethane films to enhance anti-adhesive and antibacterial properties. J Bioact Compat Polym 31:72–90CrossRefGoogle Scholar
  31. 31.
    Kocal GC, Güven S, Foygel K, Goldman A, Chen P, Sengupta S et al (2016) Dynamic microenvironment induces phenotypic plasticity of esophageal cancer cells under flow. Sci Rep 6:38221CrossRefGoogle Scholar
  32. 32.
    Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed 53:1756–1789CrossRefGoogle Scholar
  33. 33.
    Ahmed W, Kooij ES, Van Silfhout A, Poelsema B (2010) Controlling the morphology of multi-branched gold nanoparticles. Nanotechnology 21:125605CrossRefGoogle Scholar
  34. 34.
    Shin Y, Lee C, Yang M-S, Jeong S, Kim D, Kang T (2014) Two-dimensional hyper-branched gold nanoparticles synthesized on a two-dimensional oil/water interface. Sci Rep 4:6119CrossRefGoogle Scholar
  35. 35.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  36. 36.
    Cao C, Zhang J, Wen X, Dodson SL, Dao NT, Wong LM et al (2013) Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano 7:7583–7591CrossRefGoogle Scholar
  37. 37.
    Imai H (2006) Self-organized formation of hierarchical structures. Biomineralization I. Springer, Berlin, pp 43–72Google Scholar
  38. 38.
    Guermonprez C, Michelin S, Baroud CN (2015) Flow distribution in parallel microfluidic networks and its effect on concentration gradient. Biomicrofluidics 9:054119CrossRefGoogle Scholar
  39. 39.
    Trachsel F, Günther A, Khan S, Jensen KF (2005) Measurement of residence time distribution in microfluidic systems. Chem Eng Sci 60:5729–5737CrossRefGoogle Scholar
  40. 40.
    Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47:1250–1254CrossRefGoogle Scholar
  41. 41.
    Noh D, Koh Y, Kang I (1998) Numerical solutions for shape evolution of a particle growing in axisymmetric flows of supersaturated solution. J Cryst Growth 183:427–440CrossRefGoogle Scholar
  42. 42.
    Chen M, Ji X, Xu X, Zheng Y, Qian P, Wang Z (2014) The effect of the shear flow on particle growth in the undercooled melt. J Cryst Growth 401:116–119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Pharmaceutical Sciences, Faculty of PharmacyHacettepe UniversityAnkaraTurkey
  2. 2.Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science and EngineeringHacettepe UniversityAnkaraTurkey
  3. 3.Department of Bioengineering, Institute for Graduate Studies in Science and EngineeringHacettepe UniversityAnkaraTurkey
  4. 4.Department of Polymer Science and Technology, Institute for Graduate Studies in Science and EngineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations