Fabrication of highly luminescent SiO2–Au nanostructures and their application in detection of trace Hg2+

  • Shengjie WangEmail author
  • Bingshun Cui
  • Qingwei Cai
  • Yong Bu
  • Xiaojuan Wang
  • Meiwen Cao
  • Yongqing Xia
  • Hua He
Chemical routes to materials


Photoluminescence of gold nanoclusters (AuNCs) make them attractive in many fields including biological labeling and chemical detection. However, compared with organic dyes or quantum dots, the generally lower fluorescence efficiency of AuNCs limits their application. Here, an efficient and facile strategy is developed to fabricate highly luminescent SiO2–Au NCs nanostructures with a high quantum yield (33.3%) via a three-step procedure involving peptide self-assembly, biomimetic mineralization of silica, and conjugation of AuNCs. Photoluminescence lifetime, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy were used to in-depth explore the mechanism for fluorescence enhancement. The results indicated that the fluorescence enhancement of SiO2–Au NCs is mainly attributed to the suppression of strong Au(I) → ligand charge transfer and non-radiative decay triggered by confinement effect. The SiO2–Au NCs solution presents relatively high fluorescence intensity over a wide range of pH and salt concentration. These superior properties make them an ideal candidate of fluorescent probes with excellent sensitivity and selectivity in the detection of Hg2+ ions. Moreover, the quenched fluorescence of SiO2–Au NCs can be recovered by the introduction of glutathione. Therefore, SiO2–Au NCs can serve as a recyclable fluorescent probe for the detection of Hg2+ and glutathione through the “fluorescence off” or “fluorescence on” process. The results provide a promising step toward the fabrication of highly fluorescent probes of AuNCs and further expand their application in chemical detection.



This work was supported by the National Natural Science Foundation of China (21773310, 21872173) and the Fundamental Research Founds for the Central Universities (15CX017A,18CX02126A).

Supplementary material

10853_2019_3391_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1853 kb)


  1. 1.
    Zheng J, Nicovich PR, Dickson RM (2007) Annu Rev Phys Chem 58:409–431Google Scholar
  2. 2.
    Xie J, Zheng Y, Ying JY (2009) J Am Chem Soc 131:888–889Google Scholar
  3. 3.
    Goswami N, Zheng KY, Xie JP (2014) Nanoscale 6:13328–13347Google Scholar
  4. 4.
    Jin RC (2010) Nanoscale 2:343–362Google Scholar
  5. 5.
    Zhang LB, Wang EK (2014) Nano Today 9:132–157Google Scholar
  6. 6.
    Taketoshi A, Haruta M (2014) Chem Lett 43:380–387Google Scholar
  7. 7.
    Liang GH, Jin XD, Zhang SX, Xing D (2017) Biomaterials 144:95–104Google Scholar
  8. 8.
    Wang XJ, Wang YA, He H, Ma XQ, Chen Q, Zhang S, Ge BS, Wang SJ, Nau WM, Huang F (2017) ACS Appl Mater Interfaces 9:17799–17806Google Scholar
  9. 9.
    Wang Y, Chen J, Irudayaraj J (2011) ACS Nano 5:9718–9725Google Scholar
  10. 10.
    Guo CL, Irudayaraj J (2011) Anal Chem 83:2883–2889Google Scholar
  11. 11.
    Mathew A, Pradeep T (2014) Part Part Syst Charact 31:1017–1053Google Scholar
  12. 12.
    Oh E, Delehanty JB, Field LD, Makinen AJ, Goswami R, Huston AL, Medintz IL (2016) Chem Mater 28:8676–8688Google Scholar
  13. 13.
    Zhang WS, Lin DM, Wang HX, Li JF, Nienhaus GU, Su ZQ, Wei G, Shang L (2017) Bioconjugate Chem 28:2224–2229Google Scholar
  14. 14.
    Qin HY, Ma D, Du JX (2018) Spectrochim Acta A Mol Biomol Spectrosc 189:161–166Google Scholar
  15. 15.
    Cheng CH, Huang HY, Talite MJ, Chou WC, Yeh JM, Yuan CT (2017) J Colloid Interface Sci 508:105–111Google Scholar
  16. 16.
    Li H-W, Yue Y, Liu T-Y, Li D, Wu Y (2013) J Phys Chem C 117:16159–16165Google Scholar
  17. 17.
    Yang GH, Zhang H, Wang YQ, Liu XH, Luo ZX, Yao J (2017) Sensors and Actuators B 251:773–780Google Scholar
  18. 18.
    Zheng J, Petty JT, Dickson RM (2003) J Am Chem Soc 125:7780–7781Google Scholar
  19. 19.
    Zheng J, Zhang CW, Dickson RM (2004) Phys Rev Lett 93:4Google Scholar
  20. 20.
    Wen RZ, Li HC, Chen B, Wang LP (2017) Sensors and Actuators B 248:63–70Google Scholar
  21. 21.
    Raut S, Rich R, Fudala R, Butler S, Kokate R, Gryczynski Z, Luchowski R, Gryczynski I (2014) Nanoscale 6:385–391Google Scholar
  22. 22.
    Pyo K, Thanthirige VD, Yoon SY, Ramakrishna G, Lee D (2016) Nanoscale 8:20008–20016Google Scholar
  23. 23.
    Varnholt B, Letrun R, Bergkamp JJ, Fu YC, Yushchenko O, Decurtins S, Vauthey E, Liu SX, Burgi T (2015) PCCP 17:14788–14795Google Scholar
  24. 24.
    Kim JK, Jang DJ (2017) J Mater Chem C 5:6037–6046Google Scholar
  25. 25.
    Kuppan B, Maitra U (2017) Nanoscale. 9:15494–15504Google Scholar
  26. 26.
    Luo BZ, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, Xie J (2012) J Am Chem Soc 134:16662–16670Google Scholar
  27. 27.
    Tian R, Zhang S, Li M, Zhou Y, Lu B, Yan D, Wei M, Evans DG, Duan X (2015) Adv Funct Mater 25:5006–5015Google Scholar
  28. 28.
    Wang SJ, Ge X, Xue JY, Fan HM, Mu LJ, Li YP, Xu H, Lu JR (2011) Chem Mater 23:2466–2474Google Scholar
  29. 29.
    Wang S, Xue J, Ge X, Fan H, Xu H, Lu JR (2012) Chem Commun 48:9415–9417Google Scholar
  30. 30.
    Wang S, Xue J, Zhao Y, Du M, Deng L, Xu H, Lu JR (2014) Soft Matter 10:7623–7629Google Scholar
  31. 31.
    Wang S, Cai Q, Du M, Xue J, Xu H (2015) J Phys Chem B 119:12059–12065Google Scholar
  32. 32.
    Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu JR (2013) Langmuir 29:13457–13464Google Scholar
  33. 33.
    Wang S, Li M, Patil AJ, Sun S, Tian L, Zhang D, Cao M, Mann S (2017) J Mater Chem A 5:24612–24616Google Scholar
  34. 34.
    Wang S, Zhang D, Zhang X, Yu D, Jiang X, Wang Z, Cao M, Xia Y, Liu H (2019) Sustain Energ Fuels 3:529–538Google Scholar
  35. 35.
    Chan PH, Chan KC, Liu HB, Chung WH, Leung YC, Wong KY (2005) Anal Chem 77:5268–5276Google Scholar
  36. 36.
    Shang L, Dong SJ, Nienhaus GU (2011) Nano Today 6:401–418Google Scholar
  37. 37.
    Jin R, Nobusada K (2014) Nano Research 7:285–300Google Scholar
  38. 38.
    Liu JB, Duchesne PN, Yu MX, Jiang XY, Ning XH, Vinluan RD, Zhang P, Zheng J (2016) Angew Chem Int Ed 55:8894–8898Google Scholar
  39. 39.
    Baral A, Basu K, Ghosh S, Bhattacharyya K, Roy S, Datta A, Banerjee A (2017) Nanoscale 9:4419–4429Google Scholar
  40. 40.
    Sugiuchi M, Maeba J, Okubo N, Iwamura M, Nozaki K, Konishi K (2017) J Am Chem Soc 139:17731–17734Google Scholar
  41. 41.
    Mohanty JS, Xavier PL, Chaudhari K, Bootharaju MS, Goswami N, Pal SK, Pradeep T (2012) Nanoscale 4:4255–4262Google Scholar
  42. 42.
    Zhou C, Sun C, Yu M, Qin Y, Wang J, Kim M, Zheng J (2010) J Phys Chem C 114:7727–7732Google Scholar
  43. 43.
    Zheng J, Zhou C, Yu MX, Liu JB (2012) Nanoscale 4:4073–4083Google Scholar
  44. 44.
    Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU (2012) Small 8:661–665Google Scholar
  45. 45.
    Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D (2015) J Am Chem Soc 137:8244–8250Google Scholar
  46. 46.
    Tian R, Yan D, Li C, Xu S, Liang R, Guo L, Wei M, Evans DG, Duan X (2016) Nanoscale 8:9815–9821Google Scholar
  47. 47.
    Yang YY, Han AL, Li RX, Fang GZ, Liu JF, Wang S (2017) Analyst 142:4486–4493Google Scholar
  48. 48.
    Tan LL, Chen ZB, Zhao Y, Wei XC, Li YH, Zhang C, Wei XL, Hu XC (2016) Biosens Bioelectron 85:414–421Google Scholar
  49. 49.
    Yigit MV, Mishra A, Tong R, Cheng JJ, Wong GCL, Lu Y (2009) Chem Biol 16:937–942Google Scholar
  50. 50.
    Charlet L, Chapron Y, Faller P, Kirsch R, Stone AT, Baveye PC (2012) Coord Chem Rev 256:2147–2163Google Scholar
  51. 51.
    Barman S, Sadhukhan M (2012) J Mater Chem 22:21832–21837Google Scholar
  52. 52.
    Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, Li Z (2014) Biosens Bioelectron 53:76–81Google Scholar
  53. 53.
    Xie JP, Zheng YG, Ying JY (2010) Chem Commun 46:961–963Google Scholar
  54. 54.
    Zhang Y, Yan M, Jiang J, Gao P, Zhang G, Choi MMF, Dong C, Shuang S (2016) Sensors Actuators B: Chem 235:386–393Google Scholar
  55. 55.
    Tian L, Zhao W, Li L, Tong Y, Peng G, Li Y (2017) Sensors Actuators B: Chem 240:114–124Google Scholar
  56. 56.
    He J, Liu MQ, Gao FP, Gao L, Gao XY, Han R (2017) Colloids Surf A 518:80–84Google Scholar
  57. 57.
    Senthamizhan A, Celebioglu A, Uyar T (2015) Sci Rep 5:10403Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and BiotechnologyChina University of Petroleum (East China)QingdaoPeople’s Republic of China

Personalised recommendations