Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7288–7299 | Cite as

Maximizing the hard magnetic properties of melt-spun Ce–La–Fe–B alloys

  • X. F. Liao
  • J. S. Zhang
  • H. Y. Yu
  • X. C. Zhong
  • L. Z. Zhao
  • K. Xu
  • D. R. Peng
  • Z. W. LiuEmail author
Metals
  • 10 Downloads

Abstract

To balance the utilization of rare earth (RE) resource and develop Ce-based permanent magnets with high performance/cost ratio, the role of La substitution in the melt-spun (Ce1−xLax)yFe14B (x = 0–0.4, and 0.5; y = 2–4) alloys has been investigated. It has been confirmed that the hard magnetic properties of Ce-based magnets can be effectively enhanced by partial substitution of La. The maximum (BH)max of (Ce,La)–Fe–B alloys can be obtained at a Ce:La atomic ratio of 7:3. The lattice parameters and Curie temperature of the hard magnetic (Ce/La)2Fe14B phase increase linearly with increasing La content. Three different alloy systems with y = 2, 2.5 and 3 show similar behavior of magnetic properties dependences on La. In the RE-rich compositions, La substitution for Ce can effectively inhibit the precipitation of the CeFe2 phase. A solid solution, Ce(La) phase with a space group of Fm-3m, appears in the (Ce0.7La0.3)yFe14B alloys with y ≥ 3.5. A good combination of magnetic properties with Hcj = 345 kA/m, J5T = 1.03 T, Jr = 0.60 T, and (BH)max= 6.3 MGOe is obtained in (Ce0.7La0.3)2.5Fe14B alloy. In addition, 30 at.% La substitution for Ce can significantly refine the grains, resulting in the enhancement of exchange coupling interaction. The present finding is beneficial for designing new and low-cost magnetic materials.

Notes

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 51774146), and the Guangzhou Municipal Science and Technology Program (Grant No. 201707010161).

References

  1. 1.
    Jin J, Zhang Y, Bai G, Qian Z, Chen W, Ma T, Shen B, Mi Y (2016) Manipulating Ce valence in RE2Fe14B tetragonal compounds by La–Ce Co-doping: resultant crystallographic and magnetic anomaly. Sci Rep 6:30194CrossRefGoogle Scholar
  2. 2.
    Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842CrossRefGoogle Scholar
  3. 3.
    Binnemans K, Jones PT, Müller T, Yurramendi L (2018) Rare earths and the balance problem: how to deal with changing markets. J Sustain Metall 4:126–146CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Ma T, Yan M, Jin J, Wu B, Peng B, Liu Y, Yue M, Liu C (2017) Post-sinter annealing influences on coercivity of multi-main-phase Nd–Ce–Fe–B magnets. Acta Mater 146:97–105CrossRefGoogle Scholar
  5. 5.
    Zhao LZ, Zhang JS, Ahmed G, Liao XF, Liu ZW, Greneche JM (2018) Understanding the element segregation and phase separation in the Ce-substituted Nd–(Fe, Co)–B based alloys. Sci Rep 8:6826CrossRefGoogle Scholar
  6. 6.
    Sagawa M, Fujimura S, Yamamoto H, Matsuura Y (1984) Permanent magnet materials based on the rare earth–iron–boron tetragonal compounds. IEEE Trans Magn 20:1584–1589CrossRefGoogle Scholar
  7. 7.
    Jin J, Ma T, Zhang Y, Bai G, Yan M (2016) Chemically inhomogeneous RE–Fe–B permanent magnets with high figure of merit: solution to global rare earth criticality. Sci Rep 6:32200CrossRefGoogle Scholar
  8. 8.
    Li ZB, Shen BG, Zhang M, Hu FX, Sun JR (2015) Substitution of Ce for Nd in preparing R2Fe14B nanocrystalline magnets. J Alloy Compd 628:325–328CrossRefGoogle Scholar
  9. 9.
    Coey J (2012) Permanent magnets: plugging the gap. Scr Mater 67:524–529CrossRefGoogle Scholar
  10. 10.
    Lai R, Chen R, Yin W, Tang X, Wang Z, Jin C, Lee D, Yan A (2017) High performance (La, Ce, Pr, Nd)–Fe–B die-upset magnets based on misch-metal. J Alloy Compd 724:275–279CrossRefGoogle Scholar
  11. 11.
    Kapusta C (1996) 139La NMR study of RE2Fe14B compounds (RE = La, Nd, Y). J Magn Magn Mater 157:71–72CrossRefGoogle Scholar
  12. 12.
    Yamamoto H, Matsuura Y, Fujimura S, Sagawa M (1984) Magnetocrystalline anisotropy of R2Fe14B tetragonal compounds. Appl Phys Lett 45:1141–1143CrossRefGoogle Scholar
  13. 13.
    Liu XB, Altounian Z, Huang M, Zhang Q, Liu JP (2013) The partitioning of La and Y in Nd–Fe–B magnets: a first-principles study. J Alloy Compd 549:366–369CrossRefGoogle Scholar
  14. 14.
    Zhang ZY, Zhao LZ, Zhang JS, Zhong XC, Qiu WQ, Jiao DL, Liu ZW (2017) Phase precipitation behavior of rapidly quenched ternary La–Fe–B alloy and the effects of Nd substitution. Mater Res Express 4:086503CrossRefGoogle Scholar
  15. 15.
    Zhang ZY, Zhao LZ, Zhong XC, Jiao DL, Liu ZW (2017) Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment. J Magn Magn Mater 441:429–435CrossRefGoogle Scholar
  16. 16.
    Herbst JF, Meyer MS, Pinkerton FE (2012) Magnetic hardening of Ce2Fe14B. J Appl Phys 111:07A718CrossRefGoogle Scholar
  17. 17.
    Fuerst CD, Capehart TW, Pinkerton FE, Herbst JF (1995) Preparation and characterization of La2−xCexFe14B compounds. J Magn Magn Mater 139:359–363Google Scholar
  18. 18.
    Soeda H, Yanagida M, Yamasaki J, Mohri K (1985) Hard magnetic properties of rapidly quenched (La,Ce)–Fe–B Ribbons. IEEE Transl J Magn Jpn 1:1006CrossRefGoogle Scholar
  19. 19.
    Liao XF, Zhao LZ, Zhang JS, Zhong XC, Jiao DL, Liu ZW (2018) Enhanced formation of 2:14:1 phase in La-based rare earth–iron–boron permanent magnetic alloys by Nd substitution. J Magn Magn Mater 464:819–898CrossRefGoogle Scholar
  20. 20.
    Liu ZW, Davies HA (2007) Practical limits of enhancing the room temperature magnetic properties for nanocrystalline NdPrDyFeCoB alloys. J Magn Magn Mater 313:337–341CrossRefGoogle Scholar
  21. 21.
    Capehart TW, Mishra RK, Fuerst CD, Meisner GP, Pinkerton FE, Herbst JF (1997) Spectroscopic valence of cerium in cerium–lanthanum–iron compounds. Phys Rev B 55:11496–11501CrossRefGoogle Scholar
  22. 22.
    Herbst JF (1991) R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 63:819–898CrossRefGoogle Scholar
  23. 23.
    Yao Q, Shen Y, Yang P, Zhou H, Rao G, Deng J, Wang Z, Zhong Y (2016) Crystal structure and phase relations of Pr2Fe14B–La2Fe14B system. J Rare Earths 34:1121–1125CrossRefGoogle Scholar
  24. 24.
    Zhao LZ, Yu HY, Guo WT, Zhang JS, Zhang ZY, Hussain M, Liu ZW, Greneche JM (2017) Phase and hyperfine structures of melt spun nanocrystalline (Ce1-xNdx)16Fe78B6 alloys. IEEE Trans Magn 53:1800205 Google Scholar
  25. 25.
    Chang WC, Wu SH, Ma BM, Bounds CO (1997) The effects of La-substitution on the microstructure and magnetic properties of nanocomposite NdFeB melt spun ribbons. J Magn Magn Mater 167:65–70CrossRefGoogle Scholar
  26. 26.
    Zhao LZ, Guo WT, Zhang ZY, Jiao DL, Zhang JS, Liu ZW, Greneche JM (2017) Structure, magnetic properties and Mössbauer study of melt-spun nanocrystalline Ce-rich ternary Ce–Fe–B alloy. J Alloy Compd 715:60–64CrossRefGoogle Scholar
  27. 27.
    Tan X, Li H, Xu H, Han K, Li W, Zhang F (2017) A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys. Materials 10:869CrossRefGoogle Scholar
  28. 28.
    Jiang Q, Zhong M, Lei W, Zeng Q, Hu Y, Quan Q, Xu Y, Hu X, Zhang L, Liu R (2017) Effect of Ga addition on the valence state of Ce and magnetic properties of melt-spun Ce17Fe78−xB6Gax (x = 0–1.0) ribbons. AIP Adv 7:085013CrossRefGoogle Scholar
  29. 29.
    Ni BJ, Xu H, Tan XH, Hou XL (2016) Study on magnetic properties of Ce17Fe78−xZrxB6 (x = 0–2.0) alloys. J Magn Magn Mater 401:784–787CrossRefGoogle Scholar
  30. 30.
    Jiang Q, Zhong M, Quan Q, Lei W, Zeng Q, Hu Y, Xu Y, Hu X, Zhang L, Liu R (2017) Magnetic properties and microstructure of melt-spun Ce17Fe78−xB6Hfx (x = 0–1.0) alloys. J Magn Magn Mater 444:344–348CrossRefGoogle Scholar
  31. 31.
    Skoug EJ, Meyer MS, Pinkerton FE, Tessema MM, Haddad D, Herbst JF (2013) Crystal structure and magnetic properties of Ce2Fe14−xCoxB alloys. J Alloy Compd 574:552–555CrossRefGoogle Scholar
  32. 32.
    Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F (2017) Magnetic properties of melt-spun MM–Fe–B ribbons with different wheel speeds and mischmetal contents. Rare Met 36:992–996CrossRefGoogle Scholar
  33. 33.
    Quan N, Luo Y, Yan W, Yuan C, Yu D, Sun L, Lu S, Li H, Zhang H (2017) Hard magnetic properties and coercivity mechanism of melt-spun misch metal–Fe–B alloy. J Magn Magn Mater 437:12–16CrossRefGoogle Scholar
  34. 34.
    Li ZB, Wang LC, Geng XP, Hu FX, Sun JR, Shen BG (2017) Variation of magnetic properties with mischmetal content in the resource saving magnets of MM–Fe–B ribbons. J Magn Magn Mater 426:70–73CrossRefGoogle Scholar
  35. 35.
    Kelly PE, O’Grady K, Mayo PI, Chantrell RW (2002) Switching mechanisms in cobalt–phosphorus thin films. IEEE Trans Magn 25:3881–3883CrossRefGoogle Scholar
  36. 36.
    Liu ZW, Qian DY, Zhao LZ, Zheng ZG, Gao XX, Ramanujan RV (2014) Enhancing the coercivity, thermal stability and exchange coupling of nano-composite (Nd, Dy, Y)–Fe–B alloys with reduced Dy content by Zr addition. J Alloy Compd 606:44–49CrossRefGoogle Scholar
  37. 37.
    Zhang M, Li Z, Shen B, Hu F, Sun J (2015) Permanent magnetic properties of rapidly quenched (La,Ce)2Fe14B nanomaterials based on La–Ce mischmetal. J Alloy Compd 651:144–148CrossRefGoogle Scholar
  38. 38.
    Liu ZW, Davies HA (2009) Intergranular exchange interaction in nanocrystalline hard magnetic rare earth–iron–boron-based melt-spun alloy ribbons. J Phys D Appl Phys 42:145006–145019CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations