Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7131–7155 | Cite as

Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries

  • Pritam
  • Anil Arya
  • A. L. SharmaEmail author
Energy materials

Abstract

A novel blended solid polymer electrolyte comprising polyethylene oxide and polyvinylpyrrolidone polymers for blending and sodium nitrate (NaNO3) as ion conducting species has been optimized via standard solution-cast technique. XRD, FESEM, and FTIR were performed to obtain the information about the structural changes, morphology, and microstructural changes (polymer–ion and ion–ion interactions) of the solid polymer electrolyte films. The electrochemical impedance spectroscopy, linear sweep voltammetry, and it characteristics were performed to evaluate the ionic conductivity, voltage stability window, and ion transference number. The impedance study was done in a broad temperature range (40–100 °C). The DSC and TGA were used to obtain information about the thermal transitions and thermal stability of prepared films. The ion dynamics is further investigated by analyzing the complex permittivity, loss tangent, and complex conductivity. All the plots were fitted through established theoretical model/expressions in whole frequency window to obtain dielectric strength, ion conduction path behavior, and relaxation time. Transport parameters such as number density (n), mobility (μ), and diffusion coefficient (D) of mobile ions were obtained by three methods and compared satisfactorily. Lastly, a coherent mechanism for the migration of charge transport carriers within the solid polymer composites has been proposed based on the performed experimental outcome.

Notes

Acknowledgements

One of the authors (Pritam) is thankful to CSIR, New Delhi for the award of JRF fellowship. AA is thankful to the Central University of Punjab, Bathinda, for providing fellowship.

References

  1. 1.
    Yue L, Ma J, Zhang J et al (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164CrossRefGoogle Scholar
  2. 2.
    Hasa I, Hassoun J, Passerini S (2017) Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res 10:3942–3969CrossRefGoogle Scholar
  3. 3.
    Yang Q, Zhang Z, Sun X-G et al (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064CrossRefGoogle Scholar
  4. 4.
    Saykar NG, Pilania RK, Banerjee I, Mahapatra SK (2018) Synthesis of NiO–Co3O4 nanosheet and its temperature-dependent supercapacitive behavior. J Phys D Appl Phys 51:475501CrossRefGoogle Scholar
  5. 5.
    Barbos JC, Dias JP, Lanceros-Méndez S, Costa CM (2018) Recent advances in poly(Vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8:45CrossRefGoogle Scholar
  6. 6.
    Sim LN, Sentanin FC, Pawlicka A et al (2017) Development of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis (trifluoromethane) sulfonimide for application in electrochromic device. Electrochim Acta 229:22–30CrossRefGoogle Scholar
  7. 7.
    Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:494–540CrossRefGoogle Scholar
  8. 8.
    Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO–PAN + LiPF6 for energy storage. Appl Sci Lett 2:72–75Google Scholar
  9. 9.
    Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRefGoogle Scholar
  10. 10.
    Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103CrossRefGoogle Scholar
  11. 11.
    Yue L, Ma J, Zhang J et al (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164CrossRefGoogle Scholar
  12. 12.
    Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002CrossRefGoogle Scholar
  13. 13.
    Janakiraman S, Padmaraj O, Ghosh S, Venimadhav A (2018) A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J Electroanal Chem 826:142–149CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Xu K, Rong X, Hu YS, Li H, Huang X, Chen L (2017) Na3.4Zr1.8Mg0.2Si2PO12 filled poly (ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. J Power Sources 372:270–275CrossRefGoogle Scholar
  15. 15.
    Ravi M, Pavani Y, Kumar KK, Bhavani S, Sharma AK, Rao VN (2011) Studies on electrical and dielectric properties of PVP: KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448CrossRefGoogle Scholar
  16. 16.
    Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer-clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci Part B Polym Phys 46:2577–2592CrossRefGoogle Scholar
  17. 17.
    Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. J Appl Polym Sci 118:2743–2753CrossRefGoogle Scholar
  18. 18.
    Qiao J, Fu J, Lin R, Ma J, Liu J (2010) Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer 5:4850–4859CrossRefGoogle Scholar
  19. 19.
    Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Mater Lett 58:641–649CrossRefGoogle Scholar
  20. 20.
    Arya A, Sharma AL, Sharma S, Sadiq M (2016) Role of low salt concentration on electrical conductivity in blend polymeric films. J Integr Sci Technol 4:17–20Google Scholar
  21. 21.
    Arya A, Sharma S, Sharma AL, Kumar D, Sadiq M (2016) Structural and dielectric behavior of blend polymer electrolyte based on PEO–PAN + LiPF 6. Asian J Eng Appl Technol 5:4–7Google Scholar
  22. 22.
    Bhat C, Swaroop R, Arya A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5:418–434Google Scholar
  23. 23.
    Parameswaranpillai J, Thomas S, Grohens Y (2014) Polymer blends: state of the art, new challenges, and opportunities. In: Character Polymer Blends. WileyGoogle Scholar
  24. 24.
    Zhang X, Takegoshi K, Hikichi K (1992) High-resolution solid-state 13C nuclear magnetic resonance study on poly (vinyl alcohol)/poly (vinylpyrrolidone) blends. Polymer 33:712–717CrossRefGoogle Scholar
  25. 25.
    Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125–132CrossRefGoogle Scholar
  26. 26.
    Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B Condens Matter 406:1706–1712CrossRefGoogle Scholar
  27. 27.
    Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745CrossRefGoogle Scholar
  28. 28.
    Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22:803–814CrossRefGoogle Scholar
  29. 29.
    Kumar KK, Ravi M, Pavani Y et al (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211CrossRefGoogle Scholar
  30. 30.
    Chandra A, Agrawal RC, Mahipal YK (2009) Ion transport property studies on PEO–PVP blended solid polymer electrolyte membranes. J Phys D Appl Phys 42:135107CrossRefGoogle Scholar
  31. 31.
    Koduru HK, Marino L, Scarpelli F, Petrov AG, Marinov YG, Hadjichristov GB, Iliev MT, Scaramuzza N (2017) Structural and dielectric properties of NaIO4–complexed PEO/PVP blended solid polymer electrolytes. Curr Appl Phys 17:1518–1531CrossRefGoogle Scholar
  32. 32.
    Kumar KN, Kang M, Sivaiah K, Ravi M, Ratnakaram YC (2016) Enhanced electrical properties of polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP): Li+ blended polymer electrolyte films with addition of Ag nanofiller. Ionics 22:815–825CrossRefGoogle Scholar
  33. 33.
    Arya A, Nilesh Saykar G, Sharma AL (2018) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361CrossRefGoogle Scholar
  34. 34.
    Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29:17903–17920CrossRefGoogle Scholar
  35. 35.
    Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of a polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143CrossRefGoogle Scholar
  36. 36.
    Sreekanth T, Reddy MJ, Ramalingaiah S, Rao US (1999) Ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with NaNO3 salt-application as an electrochemical cell. J Power Sources 79:105–110CrossRefGoogle Scholar
  37. 37.
    Jinisha B, Anilkumar KM, Manoj M, Abhilash A, Pradeep VS, Jayalekshmi S (2018) Poly (ethylene oxide)(PEO)-based, sodium ion-conducting, solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells. Ionics 24:1675–1678CrossRefGoogle Scholar
  38. 38.
    Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2017) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7:419–431CrossRefGoogle Scholar
  39. 39.
    Ma Y, Li LB, Gao GX, Yang XY, You Y (2016) Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochim Acta 187:535–542CrossRefGoogle Scholar
  40. 40.
    Kesavan K, Mathew CM, Rajendran S, Ulaganathan M (2014) Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate. Mater Sci Eng B 184:26–33CrossRefGoogle Scholar
  41. 41.
    Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25:1428–1434CrossRefGoogle Scholar
  42. 42.
    Bertolla L, Dlouhý I, Tatarko P, Viani A, Mahajan A, Chlup Z, Boccaccini AR (2017) Pressureless spark plasma–sintered Bioglass® 45S5 with enhanced mechanical properties and stress–induced new phase formation. J Eur Ceram Soc 37:2727–2736CrossRefGoogle Scholar
  43. 43.
    Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16:339–350CrossRefGoogle Scholar
  44. 44.
    Sharma AL, Thakur AK (2011) Polymer matrix–clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46:1916–1931.  https://doi.org/10.1007/s10853-010-5027-x CrossRefGoogle Scholar
  45. 45.
    Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19:1811–1823CrossRefGoogle Scholar
  46. 46.
    Arya A, Sadiq M, Sharma AL (2018) Structural, electrical and ion transport properties of free standing blended solid polymeric thin films. Polym Bull.  https://doi.org/10.1007/s00289-018-2645-y CrossRefGoogle Scholar
  47. 47.
    Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRefGoogle Scholar
  48. 48.
    Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645CrossRefGoogle Scholar
  49. 49.
    Muchakayala R, Song S, Gao S, Wang X, Fan Y (2017) Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym Test 58:116–125CrossRefGoogle Scholar
  50. 50.
    Wu XL, Xin S, Seo HH, Kim J, Guo YG, Lee JS (2011) Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 186:1–6CrossRefGoogle Scholar
  51. 51.
    Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO: KI). Solid State Ionics 278:260–267CrossRefGoogle Scholar
  52. 52.
    Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294CrossRefGoogle Scholar
  53. 53.
    Zhang J, Yue L, Hu P, Liu Z, Qin B, Zhang B, Yao J (2014) Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Sci Rep 4:6272CrossRefGoogle Scholar
  54. 54.
    Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, VVR NR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non Cryst Solids 358:3205–3211CrossRefGoogle Scholar
  55. 55.
    Naveen Kumar P, Sasikala U, Sharma AK (2013) Investigations on conductivity and discharge profiles of novel (PEO + PEMA) polymer blend electrolyte. Int J Inno Res Sci Eng Tech 2:3575–3582Google Scholar
  56. 56.
    Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48:205–209CrossRefGoogle Scholar
  57. 57.
    Deraman SK, Mohamed NS, Subban RH (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)-ammonium triflate-ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468Google Scholar
  58. 58.
    Laha P, Panda AB, Dahiwale S, Date K, Patil KR, Barhai PK, Das AK, Banerjee I, Mahapatra SK (2010) Effect of leakage current and dielectric constant on single and double layer oxides in MOS structure. Thin Solid Films 519:1530–1535CrossRefGoogle Scholar
  59. 59.
    Chen D, Cheng J, Wen Y, Cao G, Yang Y, Liu H (2012) Impedance study of electrochemical stability limits for electrolytes. Int J Electrochem Sci 7:12383–12390Google Scholar
  60. 60.
    Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19:795–809CrossRefGoogle Scholar
  61. 61.
    Zhu P, Yan C, Dirican M, Zhu J, Zang J, Selvan RK, Wu N (2018) Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 6:4279–4285CrossRefGoogle Scholar
  62. 62.
    Kim S, Park SJ (2007) Preparation and ion-conducting behaviors of poly (ethylene oxide)-composite electrolytes containing lithium montmorillonite. Solid State Ionics 178:973–979CrossRefGoogle Scholar
  63. 63.
    Cimmino S, Di Pace E, Martuscelli E, Silvestre C (1990) Evaluation of the equilibrium melting temperature and structure analysis of poly (ethylene oxide)/poly (methyl methacrylate) blends. Die Makromolekulare Chemie Macromol Chem Phys 191:2447–2454CrossRefGoogle Scholar
  64. 64.
    Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly (ethylene oxide)(PEO)–Poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262CrossRefGoogle Scholar
  65. 65.
    Cole KS (1940) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351CrossRefGoogle Scholar
  66. 66.
    Tripathi AK, Thakur A Shukla, Marx DT (2018) Dielectric, transport and thermal properties of clay based polymer-nanocomposites. Polym Eng Sci 58:220–227CrossRefGoogle Scholar
  67. 67.
    Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504CrossRefGoogle Scholar
  68. 68.
    Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241CrossRefGoogle Scholar
  69. 69.
    Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17:135–143CrossRefGoogle Scholar
  70. 70.
    Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24:2295–2319CrossRefGoogle Scholar
  71. 71.
    Bose P, Roy A, Dutta B, Bhattacharya S (2017) Decoupling of segmental relaxation from ionic conductivity in [DEMM][TFSI] room temperature ionic liquid incorporated poly (vinylidenefluoride-co-hexafluoropropylene) membranes. Solid State Ionics 311:75–82CrossRefGoogle Scholar
  72. 72.
    Woo HJ, Majid SR, Arof AK (2012) Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134:755–761CrossRefGoogle Scholar
  73. 73.
    Dhatarwal P, Sengwa RJ, Choudhary S (2019) Effectively improved ionic conductivity of montmorillonite clay nanoplatelets incorporated nanocomposite solid polymer electrolytes for lithium ion-conducting devices. SN Appl Sci 1:112CrossRefGoogle Scholar
  74. 74.
    Teeters D, Neuman RG, Tate BD (1996) The concentration behavior of lithium triflate at the surface of polymer electrolyte materials. Solid State Ionics 85:239–245CrossRefGoogle Scholar
  75. 75.
    Singh RJ (2012) Solid state physics. Dorling Kindersley, NoidaGoogle Scholar
  76. 76.
    Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Structural, dielectric and pyroelectric studies of Pb1–XCaXTiO3 thin films. Solid State Commun 27:299–304CrossRefGoogle Scholar
  77. 77.
    Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30:165402CrossRefGoogle Scholar
  78. 78.
    Cao W, Gerhardt R (1990) Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 42:213–221CrossRefGoogle Scholar
  79. 79.
    Wei YZ, Sridhar S (1993) A new graphical representation for dielectric data. J Chem Phys 99:3119–3124CrossRefGoogle Scholar
  80. 80.
    Kumar PS, Sakunthala A, Govindan K, Reddy MV, Prabu M (2016) Single crystalline TiO2 nanorods as effective fillers for lithium ion conducting PVdF-HFP based composite polymer electrolytes. RSC Adv 6:91711–91719CrossRefGoogle Scholar
  81. 81.
    Roy A, Dutta B, Bhattacharya S (2016) Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv 6(70):65434–65442CrossRefGoogle Scholar
  82. 82.
    Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659Google Scholar
  83. 83.
    Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21:1561–1575CrossRefGoogle Scholar
  84. 84.
    Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 15:132Google Scholar
  85. 85.
    Wang Y, Sun CN, Fan F, Sangoro JR, Berman MB, Greenbaum SG, Zawodzinski TA, Sokolov AP (2013) Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Phys Rev E Stat Nonlinear Soft Matter Phys 87:042308CrossRefGoogle Scholar
  86. 86.
    García-Bernabé A, Rivera A, Granados A, Luis SV, Compañ V (2016) Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochim Acta 213:887–897CrossRefGoogle Scholar
  87. 87.
    Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) Modeling electrode polarization in dielectric spectroscopy: ion mobility and mobile ion concentration of single-ion polymer electrolytes. J Chem Phys 124:144903CrossRefGoogle Scholar
  88. 88.
    Arya A, Sharma AL (2018) Enhancement in dielectric properties of blend solid polymer electrolyte with variation of temp and salt concentration. Macromol Res.  https://doi.org/10.1007/s13233-019 CrossRefGoogle Scholar
  89. 89.
    Fuentes I, Andrio A, Teixidor F, Viñas C, Compañ V (2017) Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Phys Chem Chem Phys 19:15177–15186CrossRefGoogle Scholar
  90. 90.
    Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesCentral University of PunjabBathindaIndia

Personalised recommendations