Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7035–7047 | Cite as

Planar penta-transition metal phosphide and arsenide as narrow-gap semiconductors with ultrahigh carrier mobility

  • Jun-Hui Yuan
  • Biao Zhang
  • Ya-Qian Song
  • Jia-Fu Wang
  • Kan-Hao XueEmail author
  • Xiang-Shui Miao
Electronic materials
  • 37 Downloads

Abstract

Searching for single-atom thin materials in the planar structure, like graphene and borophene, is one of the most attractive themes in two-dimensional materials. Using density functional theory calculations, we have proposed a series of single-layer planar penta-transition metal phosphides and arsenides, i.e., TM2X4 (TM = Ni, Pd and Pt; X = P, As). According to the calculated phonon dispersion relation and elastic constants, as well as ab initio molecular dynamics simulation results, monolayers of planar penta-TM2X4 are dynamically, mechanically and thermally stable. In addition, screened HSE06 hybrid functional calculations including spin–orbit coupling show that these monolayers are direct band gap semiconductors, with band gaps ranging from 0.14 to 0.77 eV. Ultrahigh carrier mobilities up to 104–105 cm2 V−1 s−1 both for electrons and holes have been confirmed, among the highest in 2D semiconductors. Our results indicate that planar penta-TM2X4 monolayers are interesting narrow-gap semiconductors with ultrahigh carrier mobility as well as excellent optical properties, and may find potential applications in nanoelectronics and photoelectronics.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Materials Genome Initiative, 2017YFB0701700), the National Natural Science Foundation of China under Grant No. 11704134, the Fundamental Research Funds for the Central Universities of China under Grant No. HUST:2016YXMS212 and the Hubei “Chu-Tian Young Scholar” program. K.-H. Xue received support from China Scholarship Council (No. 201806165012).

Supplementary material

10853_2019_3380_MOESM1_ESM.cif (1 kb)
Supplementary material 1 (CIF 1 kb)
10853_2019_3380_MOESM2_ESM.cif (1 kb)
Supplementary material 2 (CIF 1 kb)
10853_2019_3380_MOESM3_ESM.cif (1 kb)
Supplementary material 3 (CIF 1 kb)
10853_2019_3380_MOESM4_ESM.cif (1 kb)
Supplementary material 4 (CIF 1 kb)
10853_2019_3380_MOESM5_ESM.cif (1 kb)
Supplementary material 5 (CIF 1 kb)
10853_2019_3380_MOESM6_ESM.cif (1 kb)
Supplementary material 6 (CIF 1 kb)
10853_2019_3380_MOESM7_ESM.pdf (814 kb)
Supplementary material 7 (PDF 815 kb)

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669.  https://doi.org/10.1126/science.1102896 Google Scholar
  2. 2.
    Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150.  https://doi.org/10.1038/nnano.2010.279 Google Scholar
  3. 3.
    Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377.  https://doi.org/10.1038/nnano.2014.35 Google Scholar
  4. 4.
    Novoselov KS, Mishchenko A, Carvalho A, Neto AHC (2016) 2D materials and van der Waals heterostructures. Science 353:aac9439.  https://doi.org/10.1126/science.aac9439 Google Scholar
  5. 5.
    Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712.  https://doi.org/10.1038/nnano.2012.193 Google Scholar
  6. 6.
    Nicolosi V, Chhowalla M, Kanatzidis MG et al (2013) Liquid exfoliation of layered materials. Science 340:1226419.  https://doi.org/10.1126/science.1226419 Google Scholar
  7. 7.
    Schaibley JR, Yu H, Clark G et al (2016) Valleytronics in 2D materials. Nat Rev Mater 1:16055.  https://doi.org/10.1038/natrevmats.2016.55 Google Scholar
  8. 8.
    Feng B, Zhang J, Zhong Q et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563–568.  https://doi.org/10.1038/nchem.2491 Google Scholar
  9. 9.
    Yuan J, Yu N, Xue K, Miao X (2017) Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv 7:8654–8660.  https://doi.org/10.1039/C6RA28454J Google Scholar
  10. 10.
    Yuan J, Yu N, Xue K, Miao X (2017) Stability, electronic and thermodynamic properties of aluminene from first-principles calculations. Appl Surf Sci 409:85–90.  https://doi.org/10.1016/j.apsusc.2017.02.238 Google Scholar
  11. 11.
    Kamal C, Chakrabarti A, Ezawa M (2015) Aluminene as highly hole-doped graphene. New J Phys 17:083014.  https://doi.org/10.1088/1367-2630/17/8/083014 Google Scholar
  12. 12.
    Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501.  https://doi.org/10.1103/PhysRevLett.108.155501 Google Scholar
  13. 13.
    Derivaz M, Dentel D, Stephan R et al (2015) Continuous germanene layer on Al (111). Nano Lett 15:2510–2516.  https://doi.org/10.1021/acs.nanolett.5b00085 Google Scholar
  14. 14.
    Zhu F, Chen W, Xu Y et al (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020–1025.  https://doi.org/10.1038/nmat4384 Google Scholar
  15. 15.
    Zhang S, Yan Z, Li Y et al (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed 54:3112–3115.  https://doi.org/10.1002/anie.201411246 Google Scholar
  16. 16.
    Yuan J, Yu N, Wang J et al (2018) Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl Surf Sci 436:919–926.  https://doi.org/10.1016/j.apsusc.2017.12.093 Google Scholar
  17. 17.
    Guan J, Zhu Z, Tománek D (2014) Phase coexistence and metal–insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett 113:046804.  https://doi.org/10.1103/PhysRevLett.113.046804 Google Scholar
  18. 18.
    Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728.  https://doi.org/10.1039/C5EE03732H Google Scholar
  19. 19.
    Mortazavi B, Shahrokhi M, Makaremi M, Rabczuk T (2017) Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties. Appl Mater Today 9:292–299.  https://doi.org/10.1016/j.apmt.2017.08.012 Google Scholar
  20. 20.
    Yin J, Wu B, Wang Y et al (2018) Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P). J Phys: Condens Matter 30:135701.  https://doi.org/10.1088/1361-648X/aaaf3c Google Scholar
  21. 21.
    Fan T, Zhou Y, Qiu M, Zhang H (2018) Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J Innov Opt Health Sci 11:1830003.  https://doi.org/10.1142/S1793545818300033 Google Scholar
  22. 22.
    Li L, Wang W, Gong P et al (2018) 2D GeP: an unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv Mater 30:1706771.  https://doi.org/10.1002/adma.201706771 Google Scholar
  23. 23.
    Shojaei F, Hahn JR, Kang HS (2017) Electronic structure and photocatalytic band offset of few-layer GeP2. J Mater Chem A 5:22146–22155.  https://doi.org/10.1039/C7TA07107H Google Scholar
  24. 24.
    Jing Y, Ma Y, Li Y, Heine T (2017) GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett 17:1833–1838.  https://doi.org/10.1021/acs.nanolett.6b05143 Google Scholar
  25. 25.
    Miao N, Xu B, Bristowe NC et al (2017) Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer. J Am Chem Soc 139:11125–11131.  https://doi.org/10.1021/jacs.7b05133 Google Scholar
  26. 26.
    Sun S, Meng F, Wang H et al (2018) Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J Mater Chem A 6:11890–11897.  https://doi.org/10.1039/C8TA02494D Google Scholar
  27. 27.
    Ghosh B, Puri S, Agarwal A, Bhowmick S (2018) SnP3: a previously unexplored two-dimensional material. J Phys Chem C 122:18185–18191.  https://doi.org/10.1021/acs.jpcc.8b06668 Google Scholar
  28. 28.
    Liu C-S, Yang X-L, Liu J, Ye X-J (2018) Theoretical prediction of two-dimensional SnP3 as a promising anode material for Na-ion batteries. ACS Appl Energy Mater 1:3850–3859.  https://doi.org/10.1021/acsaem.8b00621 Google Scholar
  29. 29.
    Lu N, Zhuo Z, Guo H et al (2018) CaP3: a new two-dimensional functional material with desirable band gap and ultrahigh carrier mobility. J Phys Chem Lett 9:1728–1733.  https://doi.org/10.1021/acs.jpclett.8b00595 Google Scholar
  30. 30.
    Yuan J-H, Cresti A, Xue K-H et al (2019) TlP5: an unexplored direct band gap 2D semiconductor with ultra-high carrier mobility. J Mater Chem C 7:639–644.  https://doi.org/10.1039/c8tc05164j Google Scholar
  31. 31.
    Li P, Zhang W, Li D et al (2018) Multifunctional binary monolayers GexPy: tunable band gap, ferromagnetism, and photocatalyst for water splitting. ACS Appl Mater Interfaces 10:19897–19905.  https://doi.org/10.1021/acsami.8b05655 Google Scholar
  32. 32.
    Shojaei F, Kang HS (2017) Partially planar BP3 with high electron mobility as a phosphorene analog. J Mater Chem C 5:11267–11274.  https://doi.org/10.1039/C7TC02346D Google Scholar
  33. 33.
    Yuan H, Li Z, Yang J (2018) Atomically thin semiconducting penta-PdP2 and PdAs2 with ultrahigh carrier mobility. J Mater Chem C 6:9055–9059.  https://doi.org/10.1039/C8TC03368D Google Scholar
  34. 34.
    Liu Z, Wang H, Sun J et al (2018) Penta-Pt2N4: an ideal two-dimensional material for nanoelectronics. Nanoscale 10:16169–16177.  https://doi.org/10.1039/C8NR05561K Google Scholar
  35. 35.
    Yuan J-H, Song Y-Q, Chen Q et al (2018) Single-layer planar penta-X2N4 (X = Ni, Pd and Pt) as direct-bandgap semiconductors from first principle calculations. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2018.11.041 Google Scholar
  36. 36.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 Google Scholar
  37. 37.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50.  https://doi.org/10.1016/0927-0256(96)00008-0 Google Scholar
  38. 38.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 Google Scholar
  39. 39.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106.  https://doi.org/10.1063/1.2404663 Google Scholar
  40. 40.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953 Google Scholar
  41. 41.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758 Google Scholar
  42. 42.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192.  https://doi.org/10.1103/PhysRevB.13.5188 Google Scholar
  43. 43.
    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106.  https://doi.org/10.1103/PhysRevB.78.134106 Google Scholar
  44. 44.
    Jiang J-W, Park HS (2014) Negative poisson’s ratio in single-layer black phosphorus. Nat Commun 5:4727.  https://doi.org/10.1038/ncomms5727 Google Scholar
  45. 45.
    Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112:176802.  https://doi.org/10.1103/PhysRevLett.112.176802 Google Scholar
  46. 46.
    Yuan J, Xie Q, Yu N, Wang J (2017) Surface regulated arsenenes as Dirac materials: from density functional calculations. Appl Surf Sci 394:625–629.  https://doi.org/10.1016/j.apsusc.2016.10.091 Google Scholar
  47. 47.
    Kamal C, Ezawa M (2015) Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B 91:085423.  https://doi.org/10.1103/PhysRevB.91.085423 Google Scholar
  48. 48.
    Aktürk OÜ, Özçelik VO, Ciraci S (2015) Single-layer crystalline phases of antimony: antimonenes. Phys Rev B 91:235446.  https://doi.org/10.1103/PhysRevB.91.235446 Google Scholar
  49. 49.
    Tsai H-S, Wang S-W, Hsiao C-H et al (2016) Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater 28:425–429.  https://doi.org/10.1021/acs.chemmater.5b04949 Google Scholar
  50. 50.
    Ji J, Song X, Liu J et al (2016) Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun 7:13352.  https://doi.org/10.1038/ncomms13352 Google Scholar
  51. 51.
    Qin G, Yan Q-B, Qin Z et al (2015) Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys Chem Chem Phys 17:4854–4858.  https://doi.org/10.1039/C4CP04858J Google Scholar
  52. 52.
    Ding Y, Wang Y (2013) Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 117:18266–18278.  https://doi.org/10.1021/jp407666m Google Scholar
  53. 53.
    Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120.  https://doi.org/10.1103/PhysRevB.76.064120 Google Scholar
  54. 54.
    Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85:125428.  https://doi.org/10.1103/PhysRevB.85.125428 Google Scholar
  55. 55.
    Zhang S, Zhou J, Wang Q et al (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci 112:2372–2377.  https://doi.org/10.1073/pnas.1416591112 Google Scholar
  56. 56.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403.  https://doi.org/10.1063/1.458517 Google Scholar
  57. 57.
    Savin A, Jepsen O, Flad J et al (1992) Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem Int Ed Engl 31:187–188.  https://doi.org/10.1002/anie.199201871 Google Scholar
  58. 58.
    Gatti C (2005) Chemical bonding in crystals: new directions. Z Für Krist Cryst Mater 220:399–457.  https://doi.org/10.1524/zkri.220.5.399.65073 Google Scholar
  59. 59.
    Xu M, Cheng YQ, Sheng HW, Ma E (2009) Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys Rev Lett 103:195502.  https://doi.org/10.1103/PhysRevLett.103.195502 Google Scholar
  60. 60.
    Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys: Condens Matter 21:084204.  https://doi.org/10.1088/0953-8984/21/8/084204 Google Scholar
  61. 61.
    Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360.  https://doi.org/10.1016/j.commatsci.2005.04.010 Google Scholar
  62. 62.
    Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908.  https://doi.org/10.1002/jcc.20575 Google Scholar
  63. 63.
    Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401.  https://doi.org/10.1103/PhysRevLett.102.226401 Google Scholar
  64. 64.
    Yuan J-H, Chen Q, Fonseca LR et al (2018) GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides. J Phys Commun 2:105005.  https://doi.org/10.1088/2399-6528/aade7e Google Scholar
  65. 65.
    Xue K-H, Yuan J-H, Fonseca LRC, Miao X-S (2018) Improved LDA-1/2 method for band structure calculations in covalent semiconductors. Comput Mater Sci 153:493–505.  https://doi.org/10.1016/j.commatsci.2018.06.036 Google Scholar
  66. 66.
    Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80.  https://doi.org/10.1103/PhysRev.80.72 Google Scholar
  67. 67.
    Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475.  https://doi.org/10.1038/ncomms5475 Google Scholar
  68. 68.
    Xie J, Zhang ZY, Yang DZ et al (2014) Theoretical prediction of carrier mobility in few-layer BC2N. J Phys Chem Lett 5:4073–4077.  https://doi.org/10.1021/jz502006z Google Scholar
  69. 69.
    Zhang W, Huang Z, Zhang W, Li Y (2014) Two-dimensional semiconductors with possible high room temperature mobility. Nano Res 7:1731–1737.  https://doi.org/10.1007/s12274-014-0532-x Google Scholar
  70. 70.
    Yuan J-H, Gao B, Wang W et al (2015) First-principles calculations of the electronic structure and optical properties of Y-Cu co-doped ZnO. Acta Phys Chim Sin 31:1302–1308.  https://doi.org/10.3866/PKU.WHXB201505081 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Research Center for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of ScienceWuhan University of TechnologyWuhanChina
  3. 3.IMEP-LAHCGrenoble INP – MinatecGrenoble Cedex 1France

Personalised recommendations