Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7062–7071 | Cite as

RF magnetron-sputtered Al–ZnO/Ag/Al–ZnO (AAA) multilayer electrode for transparent and flexible thin-film heater

  • Monee K. RoulEmail author
  • Sangram K. Pradhan
  • Kyo D. Song
  • Messaoud J. Bahoura
Electronic materials
  • 13 Downloads

Abstract

We report the electrothermal properties of AAA trilayer on polyethylene terephthalate substrate which allowed the development of low-cost high-performance transparent thin-film flexible heater (TTFFH) using RF magnetron sputtering. The structural, electrical, and optical properties of the AAA trilayer were investigated at different thickness of the Ag interlayer. The AAA trilayer-based TTFFH yielded saturation temperatures beyond 100 °C at 10 V at optimized Ag interlayer thickness of 5 nm. The time-dependent temperature profile along with its highly stable and reversible thermal behavior was studied. Most importantly, the AAA trilayer-based TTFFH provides a high-performance alternative to the conventional and expensive ITO electrodes at a much lower cost.

Notes

Acknowledgements

This work is supported by the NSF-CREST (CNBMD) Grant No. HRD 1036494 and NSF-CREST Grant No. HRD-1547771.

References

  1. 1.
    Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks T, Janes D (2007) Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol 2:378–384CrossRefGoogle Scholar
  2. 2.
    Hu L, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963CrossRefGoogle Scholar
  3. 3.
    Takenobu T, Takahashi T, Kanbara T, Tsukagoshi K, Aoyagi Y, Iwasa Y (2006) High-performance transparent flexible transistors using carbon nanotube films. Appl Phys Lett 88:1–3CrossRefGoogle Scholar
  4. 4.
    Kim D, Zhu L, Jeong DJ, Chun K, Bang YY, Kim SR, Kim JH, Oh SK (2013) Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon 63:530–536CrossRefGoogle Scholar
  5. 5.
    Ginley DS, Perkins JD (2010) Handbook of transparent conductors. Springer, p 1–25Google Scholar
  6. 6.
    Rao KDM, Kulkarni GU (2014) A highly crystalline single Au wire network as a high temperature transparent heater. Nanoscale 6:5645–5651CrossRefGoogle Scholar
  7. 7.
    Roul MK, Obasogie B, Kogo G, Skuza JR, Mundle RM, Pradhan AK (2017) Transparent flexible heater based on Al:ZnO degenerate semiconductor. J Appl Phys 122:135110CrossRefGoogle Scholar
  8. 8.
    Hong S, Lee H, Lee J, Kwon J, Han S, Suh YD, Cho H, Shin J, Yeo J, Ko SH (2015) Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater 27:4744–4751CrossRefGoogle Scholar
  9. 9.
    Kim TY, Kim YW, Lee HS, Kim H, Yang WS, Suh KS (2013) Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv Funct Mater 23:1250–1255CrossRefGoogle Scholar
  10. 10.
    Granqvist CG (2012) Oxide electrochoromics: an introduction to devices and materials. Sol Energy Mater Sol Cells 99:1–13CrossRefGoogle Scholar
  11. 11.
    Cairns DR (2000) Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett 76:1425–1427CrossRefGoogle Scholar
  12. 12.
    Park SK, Han JI, Moon DG, Kim WK (2003) Mechanical stability of externally deformed indium-tin-oxide films on polymer substrates. Jpn J Appl Phys 42:623–629CrossRefGoogle Scholar
  13. 13.
    Lim JW, Oh SI, Eun K, Choa SH, Koo HW, Kim TW, Kim HK (2012) Mechanical flexibility of ZnSnO/Ag/ZnSnO films grown by roll-to-roll sputtering for flexible organic photovoltaics. Jpn J Appl Phys 51:115801CrossRefGoogle Scholar
  14. 14.
    Cho DY, Kim KH, Kim TW, Noh YJ, Na SI, Chung KB, Kim HK (2015) Transparent and flexible amorphous InZnAlO films grown by roll-to-roll sputtering for acidic buffer-free flexible organic solar cells. Org Electron 24:227–233CrossRefGoogle Scholar
  15. 15.
    Park YS, Kim HK, Kim SW (2010) Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes. J Electrochem Soc 157:J301–J306CrossRefGoogle Scholar
  16. 16.
    Jo G, Choe M, Cho CY, Kim JH, Park W, Lee S, Hong WK, Kim TW, Park SJ, Hong BH, Kahng YH, Takhee Lee T (2010) Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 21:175201CrossRefGoogle Scholar
  17. 17.
    Kang J, Kim H, Kim KS, Lee SK, Bae S, Ahn JH, Kim YJ, Choi JB, Hong BH (2011) High-performance graphene-based transparent flexible heaters. Nano Lett 11:5154–5158CrossRefGoogle Scholar
  18. 18.
    Sui D, Huang Y, Huang L, Liang J, Ma J, Chen Y (2011) Flexible and transparent electrothermal film heaters based on graphene materials. Small 7:3186–3192CrossRefGoogle Scholar
  19. 19.
    Yoon YH, Song JW, Kim D, Kim J, Park JK, Oh SK, Han CS (2007) Transparent film heater using single-walled carbon nanotubes. Adv Mater 19:4284–4287CrossRefGoogle Scholar
  20. 20.
    Park SH, Lee SM, Ko EH, Kim TH, Nah YC, Lee SJ, Lee JH, Kim HK (2016) Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications. Sci Rep 6:33868CrossRefGoogle Scholar
  21. 21.
    Hwang DK, Oh MS, Lim J-H, Choi Y-S, Park S-J (2007) ZnO-based light-emitting metal-insulator-semiconductor diodes. Appl Phys Lett 91:121113Google Scholar
  22. 22.
    Hagendorfer H, Lienau K, Nishiwaki S, Fella CM, Karnz L, Uhl AR, Jaeger D, Luo L, Gretener C, Buecheler S, Romanyuk YE, Tiwari AN (2014) Highly transparent and conductive ZnO:Al thin films from a low temperature aqueous solution approach. Adv Mater 26:632–636CrossRefGoogle Scholar
  23. 23.
    Thestrup B, Schou J (1999) Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm. Appl Phys A 69:S807–S810CrossRefGoogle Scholar
  24. 24.
    Jin J, Lee J, Jeong S, Yang SC, Ko JH, Im HG, Baek SW, Lee JY, Bae BS (2013) High-performance hybrid plastic films: a robust electrode platform for thin-film optoelectronics. Energy Environ Sci 6:1811–1817CrossRefGoogle Scholar
  25. 25.
    Noh JH, Lee S, Kim JY, Lee JK, Han HS, Cho CM, Cho IS, Jung HS, Hong KS (2009) Functional multilayered transparent conducting oxide thin films for photovoltaic devices. J Phys Chem C 113:1083–1087CrossRefGoogle Scholar
  26. 26.
    Yang W, Liu Z, Peng DL, Zhang F, Huang H, Xie Y, Wu Z (2009) Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method. Appl Surf Sci 255:5669–5673CrossRefGoogle Scholar
  27. 27.
    Ando E, Miyazaki M (2001) Moisture resistance of the low-emissivity coatings with a layer structure of Al-doped ZnO/Ag/Al-doped ZnO. Thin Solid Films 392:289–293CrossRefGoogle Scholar
  28. 28.
    Park HK, Kang JW, Na SI, Kim DY, Kim HK (2009) Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics. Sol Energy Mater Sol Cells 93:1994–2002CrossRefGoogle Scholar
  29. 29.
    Miao D, Jiang S, Shang S, Chen Z (2014) Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106:1–4CrossRefGoogle Scholar
  30. 30.
    Miao D, Jiang S, Shang S, Chen Z (2014) Infrared reflective properties of AZO/Ag/AZO trilayers prepared by RF magnetron sputtering. Ceram Int 40(8):12847–12853CrossRefGoogle Scholar
  31. 31.
    Zhang DY, Yabe H, Akita E, Wang PP, Murakami R, Song XP (2011) Effect of silver evolution on conductivity and transmittance of ZnO/Ag thin films. J Appl Phys 109:104318CrossRefGoogle Scholar
  32. 32.
    Suchea M, Christoulakis S, Katsarakis N, Kitsopoulos T, Kiriakidis G (2007) Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films 515:6562–6566CrossRefGoogle Scholar
  33. 33.
    Girtan M (2012) Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol Energy Mater Sol Cells 100:153–161CrossRefGoogle Scholar
  34. 34.
    Fang D, Lin K, Xue T, Cui C, Chen X, Yao P, Li H (2014) Influence of Al doping on structural and optical properties of Mg–Al co-doped ZnO thin films prepared by sol–gel method. J Alloys Compd 589:346–352CrossRefGoogle Scholar
  35. 35.
    Daoudi K, Sandu CS, Teodorescu VS, Ghica C, Canut B, Blanchin MG, Roger JA, Oueslati M, Bessaıs B (2002) Rapid thermal annealing procedure for densification of sol–gel indium tin oxide thin films. Cryst Eng 5:187–193CrossRefGoogle Scholar
  36. 36.
    Kim YS, Park JH, Choi DH, Jang HS, Lee JH, Park HJ, Choi JI, Ju DH, Lee JY, Kim D (2007) ITO/Au/ITO multilayer thin films for transparent conducting electrode applications. Appl Surf Sci 254:1524–1527CrossRefGoogle Scholar
  37. 37.
    Klöppel A, Kriegseis W, Meyer BK, Trube J (2000) Dependence of the electrical and optical behaviour of ITO-silver-ITO multilayers on the silver properties. Thin Solid Films 365:139–146CrossRefGoogle Scholar
  38. 38.
    Kim A, Won Y, Woo K, Kim CH, Moon J (2013) Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2):1081–1091CrossRefGoogle Scholar
  39. 39.
    Balakrishnan L, Gokul Raj S, Meher SR, Asokan K, Alex ZC (2015) Impact of 100 MeV Ag7+SHI irradiation fluence and N incorporation on structural, optical, electrical and gas sensing properties of ZnO thin films. Appl Phys A Mater Sci Process 119(4):1541–1553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Materials Research and Department of EngineeringNorfolk State UniversityNorfolkUSA

Personalised recommendations