Journal of Materials Science

, Volume 54, Issue 9, pp 7307–7321 | Cite as

Effect of Nb on improving the impact toughness of Mo-containing low-alloyed steels

  • H. C. WangEmail author
  • C. Somsen
  • Y. J. Li
  • S. G. Fries
  • E. Detemple
  • G. Eggeler


The microalloying of low-alloyed steels with Nb can improve the strength-to-toughness balance. Such an effect of Nb is usually ascribed to the refinement of the grain structure occurring in the austenite regime during hot forming. In the present work, we report that Nb enhances the impact toughness of a low-alloyed Cr–Mo steel by a mechanism which has not been appreciated so far. The lower impact toughness in the Nb-free Cr–Mo steel is due to segregation of Mo to boundaries, which facilitates the formation of fine Mo-rich ξ-phase carbides lining up along the boundaries. This further promotes the nucleation and propagation of microcracks. The addition of Nb leads to the formation of Mo-enriched NbC particles. The interfaces between these particles and the matrix supply new preferential sites for precipitation of Mo-rich ξ-phase carbides upon subsequent tempering. In this way, Nb additions result in a decrease of Mo segregation to boundaries, significantly reducing the precipitation of ξ-phase carbides on grain boundaries, thus leading to improved impact toughness. In addition to the classical microstructural explanation (grain size effect), this chemical role of Nb sheds new light on the design strategies of advanced low-alloyed steels with optimized strength-to-toughness ratios.



The authors are grateful to Ms. Klara Pohl for her help with chemical etching and grain size measurements.

Supplementary material

10853_2019_3374_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1914 kb)


  1. 1.
    Deardo AJ (2003) Niobium in modern steels. Int Mater Rev 48:371–402CrossRefGoogle Scholar
  2. 2.
    Baker TN (2016) Microalloyed steels. Ironmak Steelmak 43:264–307CrossRefGoogle Scholar
  3. 3.
    Suehiro M, Liu Z-K, Ågren J (1996) Effect of niobium on massive transformation in ultra low carbon steels: a solute drag treatment. Acta Mater 44:4241–4251CrossRefGoogle Scholar
  4. 4.
    Maruyama N, Smith GDW, Cerezo A (2003) Interaction of the solute niobium or molybdenum with grain boundaries in α-iron. Mater Sci Eng A 353:126–132CrossRefGoogle Scholar
  5. 5.
    Abad R, Fernández AI, López B, Rodriguez-Ibabe JM (2001) Interaction between recrystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel. ISIJ Int 41:1373–1382CrossRefGoogle Scholar
  6. 6.
    Xiao F, Cao Y, Qiao G, Zhang X, Liao B (2012) Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels. J Iron Steel Res Int 19:52–56CrossRefGoogle Scholar
  7. 7.
    Palmiere EJ, Garcia CI, DeArdo AJ (1996) The influence of niobium supersaturation in austenite on the static recrystallization behavior of low carbon microalloyed steels. Metall Mater Trans A 27:951–960CrossRefGoogle Scholar
  8. 8.
    Misra RDK, Nathani H, Hartmann JE, Siciliano F (2005) Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel. Mater Sci Eng A 394:339–352CrossRefGoogle Scholar
  9. 9.
    Hutchinson CR, Zurob HS, Sinclair CW, Brechet YJM (2008) The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scr Mater 59:635–637CrossRefGoogle Scholar
  10. 10.
    Cao Y, Xiao F, Qiao G, Huang C, Zhang X, Wu Z, Liao B (2012) Strain-induced precipitation and softening behaviors of high Nb microalloyed steels. Mater Sci Eng A 552:502–513CrossRefGoogle Scholar
  11. 11.
    Wu H, Ju B, Tang D, Hu R, Guo A, Kang Q, Wang D (2015) Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater Sci Eng A 622:61–66CrossRefGoogle Scholar
  12. 12.
    Zhao H, Wynne BP, Palmiere EJ (2017) Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater Charact 123:128–136CrossRefGoogle Scholar
  13. 13.
    Larzabal G, Isasti N, Rodriguez-Ibabe J, Uranga P (2017) Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb–Mo and Ti–Mo microalloyed steels. Metals 7:65CrossRefGoogle Scholar
  14. 14.
    Chen Y-W, Huang B-M, Tsai Y-T, Tsai S-P, Chen C-Y, Yang J-R (2017) Microstructural evolutions of low carbon Nb/Mo-containing bainitic steels during high-temperature tempering. Mater Charact 131:298–305CrossRefGoogle Scholar
  15. 15.
    Aghajani A, Somsen C, Eggeler G (2009) On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater 57:5093–5106CrossRefGoogle Scholar
  16. 16.
    Bhadeshia HKDH (2001) Bainite in steels: transformations, microstructure and properties, 2nd edn. IOM Communications, LondonGoogle Scholar
  17. 17.
    Lee S, Kim S, Hwang B, Lee BS, Lee CG (2002) Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Mater 50:4755–4762CrossRefGoogle Scholar
  18. 18.
    Tanguy B, Besson J, Pineau A (2003) Comment on “Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel”. Scr Mater 49:191–197CrossRefGoogle Scholar
  19. 19.
    Krauss G (2015) Steels: processing, structure, and performance, 2nd edn. ASM International, Materials ParkGoogle Scholar
  20. 20.
    McMahon CJ, Cohen M (1965) Initiation of cleavage in polycrystalline iron. Acta Metall 13:591–604CrossRefGoogle Scholar
  21. 21.
    Lindley TC, Oates G, Richards CE (1970) A critical of carbide cracking mechanisms in ferride/carbide aggregates. Acta Metall 18:1127–1136CrossRefGoogle Scholar
  22. 22.
    Hong S, Lee J, Lee B-J, Kim HS, Kim S-K, Chin K-G, Lee S (2013) Effects of intergranular carbide precipitation on delayed fracture behavior in three TWinning Induced Plasticity (TWIP) steels. Mater Sci Eng A 587:85–99CrossRefGoogle Scholar
  23. 23.
    Song S, Xu T (1994) Combined equilibrium and non-equilibrium segregation mechanism of temper embrittlement. J Mater Sci 29:61–66. CrossRefGoogle Scholar
  24. 24.
    Song S, Faulkner RG, Jiang H (1994) A new view on the temperature-time dependence of temper embrittlement. J Mater Sci Lett 13:1007–1009CrossRefGoogle Scholar
  25. 25.
    Yuan L, Ponge D, Wittig J, Choi P, Jiménez JA, Raabe D (2012) Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2GPa Fe–Cr–C steel. Acta Mater 60:2790–2804CrossRefGoogle Scholar
  26. 26.
    Li YJ, Ponge D, Choi P, Raabe D (2015) Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scr Mater 96:13–16CrossRefGoogle Scholar
  27. 27.
    Li YJ, Ponge D, Choi P, Raabe D (2015) Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel. Ultramicroscopy 159:240–247CrossRefGoogle Scholar
  28. 28.
    Uemori R, Chijiiwa R, Tamehiro H, Morikawa H (1994) AP-FIM study on the effect of Mo addition on microstructure in Ti–Nb steel. Appl Surf Sci 76–77:255–260CrossRefGoogle Scholar
  29. 29.
    Lee W-B, Hong S-G, Park C-G, Park S-H (2002) Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metall Mater Trans A 33:1689CrossRefGoogle Scholar
  30. 30.
    Enloe CM, Findley KO, Parish CM, Miller MK, De Cooman BC, Speer JG (2013) Compositional evolution of microalloy carbonitrides in a Mo-bearing microalloyed steel. Scr Mater 68:55–58CrossRefGoogle Scholar
  31. 31.
    Thermo-Calc Software—Computational Materials Engineering. Accessed 19 February 2018
  32. 32.
    Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the CALPHAD method. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. 33.
    ASTM A370-17 (2017) Standard test methods and definitions for mechanical testing of steel products. ASTM International, West ConshohockenGoogle Scholar
  34. 34.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  35. 35.
    Wang H, Somsen C, Eggeler G, Detemple E (2018) Carbide types in an advanced microalloyed bainitic/ferritic Cr–Mo Steel—TEM observations and thermodynamic calculations. Mater Werkst 49:726–740CrossRefGoogle Scholar
  36. 36.
    Saxey DW, Cairney JM, McGrouther D, Honma T, Ringer SP (2007) Atom probe specimen fabrication methods using a dual FIB/SEM. Ultramicroscopy 107:756–760CrossRefGoogle Scholar
  37. 37.
    Integrated Visualization and Analysis Software (IVAS) for Atom Probe, Cameca Instr. Accessed 19 February 2018
  38. 38.
    Philippe T, Gruber M, Vurpillot F, Blavette D (2010) Clustering and local magnification effects in atom probe tomography: a statistical approach. Microsc Microanal 16:643–648CrossRefGoogle Scholar
  39. 39.
    Brito RM, Kestenbach H-J (1981) On the dispersion hardening potential of interphase precipitation in micro-alloyed niobium steel. J Mater Sci 16:1257–1263. CrossRefGoogle Scholar
  40. 40.
    Kwon O, DeArdo AJ (1991) Interactions between recrystallization and precipitation in hot-deformed microalloyed steels. Acta Metall Mater 39:529–538CrossRefGoogle Scholar
  41. 41.
    Hausmann K, Krizan D, Spiradek-Hahn K, Pichler A, Werner E (2013) The influence of Nb on transformation behavior and mechanical properties of TRIP-assisted bainitic–ferritic sheet steels. Mater Sci Eng A 588:142–150CrossRefGoogle Scholar
  42. 42.
    Misra RDK, Thompson SW, Hylton TA, Boucek AJ (2001) Microstructures of hot-rolled high-strength steels with significant differences in edge formability. Metall Mater Trans A 32:745–760CrossRefGoogle Scholar
  43. 43.
    Zhao M, Yang K, Shan Y (2002) The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater Sci Eng A 335:14–20CrossRefGoogle Scholar
  44. 44.
    Kong J, Zhen L, Guo B, Li P, Wang A, Xie C (2004) Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel. Mater Des 25:723–728CrossRefGoogle Scholar
  45. 45.
    Wang C, Wu X, Liu J, Xu N (2006) Transmission electron microscopy of martensite/austenite islands in pipeline steel X70. Mater Sci Eng A 438–440:267–271CrossRefGoogle Scholar
  46. 46.
    Shanmugam S, Ramisetti NK, Misra RDK, Hartmann J, Jansto SG (2008) Microstructure and high strength–toughness combination of a new 700 MPa Nb-microalloyed pipeline steel. Mater Sci Eng A 478:26–37CrossRefGoogle Scholar
  47. 47.
    Kuo K (1953) Carbides in Chromium Molybdenum and Tungsten Steels. J Iron Steel Inst 173:363–375Google Scholar
  48. 48.
    Sato T, Nishizawa T, Tamaki K (1962) Carbides in molybdenum steels. Trans Jpn Inst Met 3:196–202CrossRefGoogle Scholar
  49. 49.
    Craig BD (1981) Direct observation of Fe2MoC carbides in a low alloy steel. Scr Metall 15:91–94CrossRefGoogle Scholar
  50. 50.
    Rapposch M, Kostiner E, Wayne SF, Nowotny H (1985) The crystal structure of the molybdenum cementite Mo12Fe22C10 (ξ-phase). Monatshefte Für Chem 116:1237–1245CrossRefGoogle Scholar
  51. 51.
    Shtansky DV, Inden G (1997) Phase transformation in Fe–Mo–C and Fe–W–C steels—I. The structural evolution during tempering at 700 °C. Acta Mater 45:2861–2878CrossRefGoogle Scholar
  52. 52.
    Kuzin OA, Kovrova TP, Meshcheryakova TM (1999) Influence of the carbide phase on fracture of improved steels. Mater Sci 35:220–224CrossRefGoogle Scholar
  53. 53.
    Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties. Butterworth-Heinemann, OxfordGoogle Scholar
  54. 54.
    Heo NH (1996) Grain boundary segregation and intergranular fracture in ferrite containing Mo, Si or Al. Met Mater 2:49–64CrossRefGoogle Scholar
  55. 55.
    Geng WT, Freeman AJ, Wu R, Olson GB (2000) Effect of Mo and Pd on the grain-boundary cohesion of Fe. Phys Rev B 62:6208–6214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for MaterialsRuhr-Universität BochumBochumGermany
  2. 2.ZGHRuhr-Universität BochumBochumGermany
  3. 3.ICAMSRuhr-Universität BochumBochumGermany
  4. 4.Department of Heavy Plate ResearchAG der Dillinger HüttenwerkeDillingen/SaarGermany

Personalised recommendations