Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7078–7086 | Cite as

Synthesis of porous polymer-based metal–organic frameworks monolithic hybrid composite for hydrogen storage application

  • Lerato Y. Molefe
  • Nicholas M. MusyokaEmail author
  • Jianwei Ren
  • Henrietta W. Langmi
  • Patrick G. Ndungu
  • Robert Dawson
  • Mkhulu Mathe
Energy materials
  • 79 Downloads

Abstract

Herein, we report a simple method for the preparation of cross-linked polymer of intrinsic microporosity (PIM-1)/Materials Institute Lavoisier chromium (III) terephthalate [MIL-101(Cr)] monoliths which involves direct impregnation of PIM-1 with MIL-101(Cr) powder by physical mixing in tetrachloroethane solvent. This procedure yields monoliths with high metal–organic framework (MOF) loading weight percentages of up to 80 wt% of MIL-101 powder with little loss of composite mechanical strength. From the nitrogen adsorption isotherms, it was observed that the PIM-1/80 wt% MIL-101(Cr) had good retention of MOF filler surface area and accessibility of its micropores with nearly no pore blocking effects. The hydrogen adsorption was also not far from the estimated hydrogen uptake capacity based on the MIL-101 weight percentage estimation. As a consequence of the highly porous nature of the hybrid material, PIM-1/MIL-101(Cr) composite has been considered as a promising material for inclusion in hybrid hydrogen storage cylinders. Moreover, these composites provided better handling compared to the crystalline powder MOFs without compromising the properties of MOF.

Notes

Acknowledgements

The authors acknowledge financial support from the Department of Science and Technology (DST) of South Africa towards HySA Infrastructure (Grant No. EIMH01X), National Research Foundation (NRF) for NM Musyoka’s Y-rated researcher development grant (Grant No. EIMH05X) and the Royal Society—DFID Africa Capacity Building Initiative Programme Grant (Grant No. AQ150029).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Schlapbach L, Züttel A (2011) Hydrogen-storage materials for mobile applications. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group 265–270Google Scholar
  2. 2.
    Lim KL, Kazemian H, Yaakob Z, Daud WW (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33:213–226CrossRefGoogle Scholar
  3. 3.
    Ren J, Langmi HW, North BC, Mathe M (2015) Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int J Energy Res 39:607–620CrossRefGoogle Scholar
  4. 4.
    U.S. Department of Energy (2018) DOE Technical targets for onboard hydrogen storage for light-duty vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. Accessed 19 July 2018
  5. 5.
    Ren J, Musyoka NM, Langmi HW, Swartbooi A, North BC, Mathe M (2015) A more efficient way to shape metal–organic framework (MOF) powder materials for hydrogen storage applications. Int J Hydrogen Energy 40:4617–4622CrossRefGoogle Scholar
  6. 6.
    Ren J, Dyosiba X, Musyoka NM, Langmi HW, Mathe M, Liao S (2017) Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord Chem Rev 352:187–219CrossRefGoogle Scholar
  7. 7.
    Huo J, Marcello M, Garai A, Bradshaw D (2013) MOF-polymer composite microcapsules derived from pickering emulsions. Adv Mater 25:2717–2722CrossRefGoogle Scholar
  8. 8.
    Zornoza B, Tellez C, Coronas J, Gascon J, Kapteijn F (2013) Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater 166:67–78CrossRefGoogle Scholar
  9. 9.
    Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512CrossRefGoogle Scholar
  10. 10.
    Denny MS, Cohen SM (2015) In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed 54:9029–9032CrossRefGoogle Scholar
  11. 11.
    Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, Kapteijn F, Gascon J (2015) Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev 44:2421–2454CrossRefGoogle Scholar
  12. 12.
    Zhang ZJ, Nguyen HTH, Miller SA, Cohen SM (2015) PolyMOFs: a class of interconvertible polymer-metal–organic-framework hybrid materials. Angew Chem Int Ed 54:6152–6157CrossRefGoogle Scholar
  13. 13.
    Kubica P, Wolinska-Grabczyk A, Grabiec E, Libera M, Wojtyniak M, Czajkowska S, Domański M (2016) Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles. Microporous Mesoporous Mater 235:120–134CrossRefGoogle Scholar
  14. 14.
    DeCoste JB, Denny MS, Peterson GW, Mahle JJ, Cohen SM (2016) Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem Sci 7:2711–2716CrossRefGoogle Scholar
  15. 15.
    Ling RJ, Ge L, Diao H, Rudolph V, Zhu ZH (2016) Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation. ACS Appl Mater Interfaces 8:32041–32049CrossRefGoogle Scholar
  16. 16.
    Zhang ZJ, Nguyen HTH, Miller SA, Ploskonka AM, DeCoste JB, Cohen SM (2016) Polymer-metal–organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J Am Chem Soc 138:920–925CrossRefGoogle Scholar
  17. 17.
    Wickenheisser M, Herbst A, Tannert R, Milow B, Janiak C (2015) Hierarchical MOF-xerogel monolith composites from embedding MIL-100 (Fe, Cr) and MIL-101 (Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous Mesoporous Mater 215:143–153CrossRefGoogle Scholar
  18. 18.
    Wickenheisser M, Janiak C (2015) Hierarchical embedding of micro-mesoporous MIL-101 (Cr) in macroporous poly (2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater 204:242–250CrossRefGoogle Scholar
  19. 19.
    Channell MN, Sefa M, Fedchak JA, Scherschligt J, Miller AE, Ahmed Z, Hartings MR (2017) Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym Adv Technol 1–7Google Scholar
  20. 20.
    Rochat S, Polak-Kraśna K, Tian M, Holyfield LT, Mays TJ, Bowen CR, Burrows AD (2017) Hydrogen storage in polymer-based processable microporous composites. J Mater Chem A 5:18752–18761CrossRefGoogle Scholar
  21. 21.
    Polak-Kraśna K, Dawson R, Holyfield LT, Bowen CR, Burrows AD, Mays TJ (2017) Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. J Mater Sci 52:3862–3875.  https://doi.org/10.1007/s10853-016-0647-4 CrossRefGoogle Scholar
  22. 22.
    Ren J, Musyoka NM, Langmi HW, Segakweng T, North BC, Mathe M, Kang X (2014) Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake. Int J Hydrogen Energy 39:12018–12023CrossRefGoogle Scholar
  23. 23.
    Budd PM, Elabas ES, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE, Wang D (2004) Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv Mater 16:456–459CrossRefGoogle Scholar
  24. 24.
    Wu X, Liu W, Wu H, Zong X, Yang L, Wu Y, Ren Y, Shi C, Wang S, Jiang Z (2018) Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J Membr Sci 548:309–318CrossRefGoogle Scholar
  25. 25.
    Yang JF, Zhao Q, Li JP, Dong JX (2010) Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behaviour. Microporous Mesoporous Mater 130:174–179CrossRefGoogle Scholar
  26. 26.
    Du N, Robertson GP, Song J, Pinnau I, Thomas S, Guiver MD (2008) Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 41:9656–9662CrossRefGoogle Scholar
  27. 27.
    Broom DP, Webb CJ, Hurst KE, Parilla PA, Gennett T, Brown CM, Zacharia R, Tylianakis E, Klontzas E, Froudakis GE, Steriotis TA (2016) Outlook and challenges for hydrogen storage in nanoporous materials. Appl Phys A 122:151–171CrossRefGoogle Scholar
  28. 28.
    Ren J, Musyoka NM, Langmi HW, North BC, Mathe M, Kang X (2014) Fabrication of core-shell MIL-101(Cr)@UiO-66(Zr) nanocrystals for hydrogen storage. Int J Hydrogen Energy 39:14912–14917CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR)Brummeria, PretoriaSouth Africa
  2. 2.Energy Sensors and Multifunctional Nanomaterials Research Group, Department of Applied ChemistryUniversity of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
  3. 3.Department of ChemistryUniversity of SheffieldSheffieldUK

Personalised recommendations