Journal of Materials Science

, Volume 54, Issue 9, pp 6799–6806 | Cite as

Stabilities and piezoelectric properties of morphotropic phase boundary composition 0.2Pb(Mg1/3Nb2/3)O3–0.38PbZrO3–0.42PbTiO3 ternary piezoceramics

  • Ashutosh Upadhyay
  • Hyun Ae Cha
  • Jae-Ho JeonEmail author


The phase stabilities and piezoelectric properties of morphotropic phase boundary ternary piezoceramics (0.2Pb(Mg1/3Nb2/3)O3–0.38PbZrO3–0.42PbTiO3) are investigated as a function of sintering conditions. The tetragonality (c/a) of the morphotropic phase boundary, where the rhombohedral and tetragonal phases coexist (space groups R3m and P4mm, respectively), is affected by the sintering temperature and time. This tetragonality affects the piezoelectric properties. The results demonstrate that a large tetragonality is undesirable for the piezoelectric properties. The structure and properties of morphotropic phase boundary piezoelectric materials are strongly correlated.



We would like to acknowledge the financial support from the R&D Convergence Program of NST (National Research Council of Science and Technology) of Republic of Korea.

Compliance with ethical standards

Conflict of interest statement

The authors declare that there is no conflict of interest.


  1. 1.
    Jaffe W, Cook H Jaffe (1971) Piezoelectric ceramics. Academic, New YorkGoogle Scholar
  2. 2.
    Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797CrossRefGoogle Scholar
  3. 3.
    Yuhuan X (1991) Ferroelectric materials and their applications. Elsevier, North Holland. CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Zhao J, Cross L (1996) Aging of the dielectric and piezoelectric properties of relaxor ferroelectric lead magnesium niobate–lead titanate in the electric field biased state. J Appl phys 79:3181–3187CrossRefGoogle Scholar
  5. 5.
    Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76:241CrossRefGoogle Scholar
  6. 6.
    Kahn M, Burks D, Burn I, Schulze W (1988) Ceramic capacitor technology. In: Levinson LM (ed) Electronic ceramics. Marcel Dekker, New York, p 191–274Google Scholar
  7. 7.
    Cross L, Jang S, Newnham R, Nomura S, Uchino K (1980) Large electrostrictive effects in relaxor ferroelectrics. Ferroelectrics 23:187–191CrossRefGoogle Scholar
  8. 8.
    Nomura S, Uchino K (1983) Recent applications of PMN-based electrostrictors. Ferroelectrics 50:197–202. CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Jeong CK, Wang J, Sun H, li F, Zhang G, Chen L-Q, Zhang S, Chen W, Wang Q (2018) Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 50:35–42CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Zhu W, Jeong CK, Sun H, Yang G, Chen W, Wang Q (2017) A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv 7:32502CrossRefGoogle Scholar
  11. 11.
    Go SH, Kim DS, Han SH, Kang H-W, Lee H-G, Cheon C (2017) Figures of merit of (K, Na, Li)(Nb, Ta)O3 ceramics with various Li contents for a piezoelectric energy harvester. J Korean Ceram Soc 54:530–534CrossRefGoogle Scholar
  12. 12.
    Cheng Z-Y, Katiyar R, Yao X, Guo A (1997) Dielectric behavior of lead magnesium niobate relaxors. Phys Rev B 55:8165CrossRefGoogle Scholar
  13. 13.
    Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52. CrossRefGoogle Scholar
  14. 14.
    Singh AK, Pandey D, Zaharko O (2006) Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)[Pb(Mg1/3Nb2/3)O3]−xPbTiO3. Phys Rev B 74:024101. CrossRefGoogle Scholar
  15. 15.
    Noheda B, Cox DE, Shirane G, Gao J, Ye ZG (2002) Phase diagram of the ferroelectric relaxor (1−x) PbMg1/3Nb2/3O3 − xPbTiO3. Phys Rev B 66:054104. CrossRefGoogle Scholar
  16. 16.
    Koval V, Alemany C, Briančin J, Bruncková H, Saksl K (2003) Effect of PMN modification on structure and electrical response of xPMN–(1−x)PZT ceramic systems. J Eur Ceram Soc 23:1157–1166CrossRefGoogle Scholar
  17. 17.
    Liu C, Pan S, Chen Z et al (2015) Phase diagram of ternary Pb (Mg1/3Nb2/3) O3–PbZrO3–PbTiO3, ferroelectric ceramics prepared via a B-site oxide mixing route. Ferroelectrics 482:11–21. CrossRefGoogle Scholar
  18. 18.
    Yimnirun R, Ananta S, Ngamjarurojana A, Wongsaenmai S (2005) Uniaxial stress dependence of ferroelectric properties of xPMN–(1−x)PZT ceramic systems. Appl Phys A 81:1227–1231. CrossRefGoogle Scholar
  19. 19.
    Srivastava G, Maglione M, Umarji AM (2012) The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT–PMN systems. AIP Adv 2:042170. CrossRefGoogle Scholar
  20. 20.
    Wang L, Liang R, Mao C, Du G, Wang G, Dong X (2013) Effect of PMN content on the phase structure and electrical properties of PMN–PZT ceramics. Ceram Int 39:8571–8574. CrossRefGoogle Scholar
  21. 21.
    Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb (Zn1/3Nb2/3) O3–PbTiO3 system. Ferroelectrics 37:579–582CrossRefGoogle Scholar
  22. 22.
    Upadhyay A, Pandey R, Anand S, Singh AK (2014) Synthesis and structural studies on (1−x)Bi(Mg1/2Ti1/2)O3−xPbTiO3 piezoceramics. AIP Conf Proc 1591:79–80CrossRefGoogle Scholar
  23. 23.
    Pandey R, Tiwari A, Upadhyay A, Singh AK (2014) Phase coexistence and the structure of the morphotropic phase boundary region in (1−x)Bi(Mg1/2Zr1/2)O3−xPbTiO3 piezoceramics. Acta Mater 76:198–206. CrossRefGoogle Scholar
  24. 24.
    Upadhyay A, Pandey R, Singh AK (2017) Origin of ferroelectric P–E loop in cubic compositions and structure of poled (1−x)Bi(Mg1/2Zr1/2)O3−xPbTiO3 piezoceramics. J Am Ceram Soc 100:1743–1750CrossRefGoogle Scholar
  25. 25.
    Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281CrossRefGoogle Scholar
  26. 26.
    Upadhyay A, Singh AK (2015) Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg1/2Ti1/2)O3−xPbTiO3 piezoceramics. J Appl Phys 117:144102CrossRefGoogle Scholar
  27. 27.
    Upadhyay A, Singh AK (2016) Electric field induced structural transformations across the morphotropic phase boundary of (1−x)Bi(Mg1/2Ti1/2)O3−xPbTiO3 piezoceramics. Scripta Mater 115:71–74. CrossRefGoogle Scholar
  28. 28.
    Pandey R, Singh AK (2014) Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1−x)Bi(Ni1/2Ti1/2)O3−xPbTiO3 solid solution: a Rietveld study. J Appl Phys 116:044102. CrossRefGoogle Scholar
  29. 29.
    Singh A, Moriyoshi C, Kuroiwa Y, Pandey D (2013) Evidence for local monoclinic structure, polarization rotation, and morphotropic phase transitions in (1−x)BiFeO3−xBaTiO3 solid solutions: a high-energy synchrotron x-ray powder diffraction study. Phys Rev B 88:024113. CrossRefGoogle Scholar
  30. 30.
    JR Carvajal (2011) Laboratory Leon Brillouin CEA-CNRS see. for FULLPROF
  31. 31.
    Kothai V, Narayan B, Brajesh K, Kaushik SD, Siruguri V, Ranjan R (2014) Ferroelectric phase coexistence by crystallite size reduction in BiFeO3−PbTiO3. Phys. Rev. B 90:155115. CrossRefGoogle Scholar
  32. 32.
    Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao H, Hemley RJ, Ren Y, Liermann P, Wu Z (2008) Origin of morphotropic phase boundaries in ferroelectrics. Nature 451:545. CrossRefGoogle Scholar
  33. 33.
    Li JY, Rogan RC, Üstündag E, Bhattacharya K (2005) Domain switching in polycrystalline ferroelectric ceramics. Nat Mater 4:776–781. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Functional Powder MaterialsKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Campus of Korea Institute of Materials ScienceKorea University of Science and TechnologyChangwonRepublic of Korea

Personalised recommendations