Journal of Materials Science

, Volume 54, Issue 9, pp 7383–7396 | Cite as

Fabrication of melamine–urea–formaldehyde/paraffin microcapsules modified with cellulose nanocrystals via in situ polymerization

  • Shenjie Han
  • Shaoyi Lyu
  • Zhilin Chen
  • Siqun WangEmail author
  • Feng FuEmail author


The study aims to obtain leakage-free, thermally stable melamine–urea–formaldehyde (MUF)/paraffin microcapsules modified with cellulose nanocrystals (CNCs) by in situ polymerization technique. The morphological features and physicochemical characteristics of CNCs were investigated by transmission electron microscopy, zeta potential measurement, X-ray diffraction, and Fourier transform infrared spectroscopy. Optical microscope measurement, field emission scanning electron microscopy, thermogravimetric analyzer, and differential scanning calorimetry were employed to characterize the morphology, size distribution, and phase change properties of MUF/paraffin microcapsules. The characterization results showed that MUF/paraffin microcapsules were successfully fabricated and modified with CNCs. The CNCs had no impact on the chemical structure or crystal type of MUF/paraffin microcapsules. When the CNC addition was 0.2 wt%, the phase change latent heat values of melting and crystallization of MUF/paraffin microcapsules were, respectively, about 104.5 J/g and 102.8 J/g and the encapsulation efficiency was about 59.8%.



This work was supported by the Fundamental Research Funds of CAF (No. CAFYBB2017ZX003), the financial support from the National High-Tech R&D Program (863 Program) (Grant No. 2010AA101704), the USDA National Institute of Food and Agriculture, Hatch Project 1012359, and the Special Fund for Forest Scientific Research in the Public Welfare (No. 201504603).


  1. 1.
    Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737CrossRefGoogle Scholar
  2. 2.
    Chen Z, Wang J, Yu F, Zhang Z, Gao X (2015) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630CrossRefGoogle Scholar
  3. 3.
    Wu B, Zheng G, Chen X (2015) Effect of graphene on the thermophysical properties of melamine–urea–formaldehyde/N-hexadecane microcapsules. RSC Adv 5:74024–74031CrossRefGoogle Scholar
  4. 4.
    Huang X, Liu Z, Xia W, Zou R, Han RS (2015) Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J Mater Chem A 3:1935–1940CrossRefGoogle Scholar
  5. 5.
    Fayyad EM, Almaadeed MA, Jones A (2016) Preparation and characterization of urea–formaldehyde microcapsules filled with paraffin oil. Polym Bull 73:631–646CrossRefGoogle Scholar
  6. 6.
    Qiu X, Li W, Song G, Chu X, Tang G (2012) Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Sol Energy Mater Sol C 98:283–293CrossRefGoogle Scholar
  7. 7.
    Wang W, Yang X, Fang Y, Ding J (2009) Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl Energy 86:170–174CrossRefGoogle Scholar
  8. 8.
    Konuklu Y, Paksoy HO, Unal M, Konuklu S (2014) Microencapsulation of a fatty acid with poly(melamine–urea–formaldehyde). Energy Convers Manag 80:382–390CrossRefGoogle Scholar
  9. 9.
    Purohit BK, Sistla VS (2017) Crystallization of inorganic salt hydrates in polymeric foam for thermal energy storage application. J Energy Storage 12:196–201CrossRefGoogle Scholar
  10. 10.
    Liu H, Wang X, Wu D (2017) Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. ACS Sustain Chem Eng 5:4906–4915CrossRefGoogle Scholar
  11. 11.
    Qiu X, Lu L, Chen Z (2015) Preparation and characterization of flame retardant phase change materials by microencapsulated paraffin and diethyl ethylphosphonate with poly(methacrylic acid-co-ethyl methacrylate) shell. J Appl Polym Sci 132:41880–41887CrossRefGoogle Scholar
  12. 12.
    Su JF, Wang XY, Dong H (2012) Micromechanical properties of melamine–formaldehyde microcapsules by nanoindentation: effect of size and shell thickness. Mater Lett 89:1–4CrossRefGoogle Scholar
  13. 13.
    Chaiyasat P, Noppalit S, Okubo M, Chaiyasat A (2016) Innovative synthesis of high performance poly (methyl methacrylate) microcapsules with encapsulated heat storage material by microsuspension iodine transfer polymerization (ms ITP). Sol Energy Mater Sol C 157:996–1003CrossRefGoogle Scholar
  14. 14.
    Lu S, Shen T, Xing J, Song Q, Xin C (2017) Preparation, characterization, and thermal stability of double-composition shell microencapsulated phase change material by interfacial polymerization. Colloid Polym Sci 295:2061–2067CrossRefGoogle Scholar
  15. 15.
    Li M, Wu Z, Tan J (2012) Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method. Appl Energy 92:456–461CrossRefGoogle Scholar
  16. 16.
    Yu S, Wang X, Wu D (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy 114:632–643CrossRefGoogle Scholar
  17. 17.
    Nguon O, Lagugnélabarthet F, Brandys F, Li J, Gillies ER (2017) Microencapsulation by in situ polymerization of amino resins. Polym Rev 58:326–375CrossRefGoogle Scholar
  18. 18.
    Abitbol T, Palermo A, Moran-Mirabal JM, Cranston ED (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromol 9:3278–3284CrossRefGoogle Scholar
  19. 19.
    Natterodt JC, Petrifink A, Weder C, Zoppe JO (2017) Cellulose nanocrystals: surface modification, applications and opportunities at interfaces. Chim Int J Chem 6:376–383CrossRefGoogle Scholar
  20. 20.
    Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 24:6105–6114CrossRefGoogle Scholar
  21. 21.
    Hu Z, Berry RM, Pelton RH, Cranston ED (2017) One-pot water-based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols. ACS Sustain Chem Eng 6:5018–5026CrossRefGoogle Scholar
  22. 22.
    Abitbol T, Kam D, Levikalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 13:3925–3933CrossRefGoogle Scholar
  23. 23.
    Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80CrossRefGoogle Scholar
  24. 24.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3954CrossRefGoogle Scholar
  25. 25.
    Wu Q, Li X, Fu S, Li Q, Wang S (2017) Estimation of aspect ratio of cellulose nanocrystals by viscosity measurement: influence of surface charge density and NaCl concentration. Cellulose 24:1–10CrossRefGoogle Scholar
  26. 26.
    Wu Q, Meng Y, Concha K, Wang S, Li Y, Ma L, Fu S (2013) Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Ind Crop Prod 48:28–35CrossRefGoogle Scholar
  27. 27.
    Svagan AJ, Musyanovych A, Kappl M, Bernhardt M, Glasser G, Wohnhaas C, Berglund LA, Risbo J, Landfester K (2014) Cellulose nanofiber/nanocrystal reinforced capsules: a fast and facile approach toward assembly of liquid-core capsules with high mechanical stability. Biomacromol 15:1852–1859CrossRefGoogle Scholar
  28. 28.
    Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interface 6:20093–20101CrossRefGoogle Scholar
  29. 29.
    Nypelö T, Rodriguezabreu C, Kolen’Ko YV, Rivas J, Rojas OJ (2014) Microbeads and hollow microcapsules obtained by self-assembly of pickering magneto-responsive cellulose nanocrystals. ACS Appl Mater Interface 6:16851–16858CrossRefGoogle Scholar
  30. 30.
    Ye C, Malak ST, Hu K, Wu W, Tsukruk VV (2015) Cellulose nanocrystal microcapsules as tunable cages for nano-and microparticles. ACS Nano 9:10887–10895CrossRefGoogle Scholar
  31. 31.
    Luo F, Wu K, Lu M, Nie S, Li X, Guan X (2015) Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J Therm Anal Calorim 120:1327–1335CrossRefGoogle Scholar
  32. 32.
    Wang W, Jung J, Zhao Y (2017) Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydr Polym 157:1246–1253CrossRefGoogle Scholar
  33. 33.
    Yoo Y, Martinez C, Youngblood JP (2017) Synthesis and characterization of microencapsulated phase change materials with poly(urea–urethane) shells containing cellulose nanocrystals. ACS Appl Mater Interface 9:31763–31776CrossRefGoogle Scholar
  34. 34.
    Yoo Y, Martinez C, Youngblood JP (2017) Sustained dye release using poly(urea–urethane)/cellulose nanocrystal composite microcapsules. Langmuir 6:1521–1532CrossRefGoogle Scholar
  35. 35.
    Reiner RS, Rudie AW (2013) 1 Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory. In: Postek MT, Moon RJ, Rudie AW, Bilodeau MA (eds) Production and applications of cellulose nanomaterials. TAPPI Press, Peachtree Corners, pp 21–24Google Scholar
  36. 36.
    Yu F, Chen ZH, Zeng XR (2009) Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene-maleic anhydride as emulsifier. Colloid Polym Sci 287:549–560CrossRefGoogle Scholar
  37. 37.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 1:1–10CrossRefGoogle Scholar
  38. 38.
    Su JF, Wang LX, Ren L (2007) Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloid Surf A 299:268–275CrossRefGoogle Scholar
  39. 39.
    Braun D, Sauerwein R, Hellmann GP (2001) Polymeric surfactants from styrene-co-maleic-anhydride copolymers. Macromol Symp 163:59–60CrossRefGoogle Scholar
  40. 40.
    Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944CrossRefGoogle Scholar
  41. 41.
    Kasiri N, Fathi M (2018) Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int J Biol Macromol 106:1023–1031CrossRefGoogle Scholar
  42. 42.
    Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931CrossRefGoogle Scholar
  43. 43.
    Zhang H, Wang X (2009) Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell. Colloid Surf A 332:129–138CrossRefGoogle Scholar
  44. 44.
    Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interface 8:4078–4086CrossRefGoogle Scholar
  45. 45.
    Oudiani AE, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 3:1221–1229CrossRefGoogle Scholar
  46. 46.
    Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interface 5:2999–3009CrossRefGoogle Scholar
  47. 47.
    Chen Z, Cao L, Fang G, Shan F (2013) Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials. Nanoscale Microscale Therm 17:112–123CrossRefGoogle Scholar
  48. 48.
    Wang T, Wang S, Geng L, Fang Y (2016) Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. Appl Energy 179:601–608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
  2. 2.Center for Renewable CarbonUniversity of TennesseeKnoxvilleUSA
  3. 3.Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina

Personalised recommendations