Advertisement

Microcrystalline Gd2MoO6 prepared by combined mechanochemical/thermal process and its magnetic properties

  • Erika Tóthová
  • Róbert Tarasenko
  • Vladimír Tkáč
  • Martin Orendáč
  • Michal Hegedüs
  • Zuzana Danková
  • Marián Holub
  • Matej Baláž
  • Marek Matik
Ceramics
  • 15 Downloads

Abstract

Gadolinium oxymolybdate, Gd2MoO6 (monoclinic, C2/c) was prepared via nonconventional mechanochemical/thermal process from powdered oxide precursors (Gd2O3 and (NH4)2MoO4). The effect of mechanical activation via high-energy ball milling on the reactivity of the stoichiometric Gd2O3 + (NH4)2MoO4 mixture was studied by thermal analysis (TG-DSC) and Fourier-transform infrared spectroscopy. While thermal treatment of nonactivated mixture leads only to decomposition of (NH4)2MoO4 and formation of Gd2O3–MoO3 system, mechanical activation provides enough energy for a chemical reaction between both reactants. The product with an average crystallite size of approximately 1 μm shows a well-faceted morphology. The investigation of magnetic properties revealed antiferromagnetic coupling, which is attributed to exchange interactions.

Notes

Acknowledgements

The present work is supported by the projects of Slovak Grant Agency VEGA (2/0175/17, 2/0044/18) and APVV (14-0073, 14-0103).

References

  1. 1.
    Dutta S, Sharma SK (2016) Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6. J Mater Sci 51(14):6750–6760.  https://doi.org/10.1007/s10853-016-9962-z CrossRefGoogle Scholar
  2. 2.
    Chen Y, Wang J, Liu CM, Kuang XJ, Su QA (2011) A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes. Appl Phys Lett 98(8):081917.  https://doi.org/10.1063/1.3557065 CrossRefGoogle Scholar
  3. 3.
    Huang MN, Ma YY, Huang XY, Ye S, Zhang QY (2013) The luminescence properties of Bi3+ sensitized Gd2MoO6:RE3+ (RE = Eu or Sm) phosphors for solar spectral conversion. Spectrochim Acta A 115:767–771.  https://doi.org/10.1016/j.saa.2013.06.111 CrossRefGoogle Scholar
  4. 4.
    Lei F, Yan B, Chen HH, Zhao JT (2009) Molten salt synthesis, characterization, and luminescence properties of Gd2MO6:Eu3+ (M = W, Mo) phosphors. J Am Ceram Soc 92(6):1262–1267.  https://doi.org/10.1111/j.1551-2916.2009.03006.x CrossRefGoogle Scholar
  5. 5.
    Alonso JA, Rivillas F, Martinez-Lope MJ, Pomjakushin V (2004) Preparation and structural study from neutron diffraction data of R2MoO6 (R = Dy, Ho, Er, Tm, Yb, Y). J Solid State Chem 177(7):2470–2476.  https://doi.org/10.1016/j.jssc.2004.03.046 CrossRefGoogle Scholar
  6. 6.
    Chen FM, Liu XH (2013) Structure and photoluminescence properties of La2Mo(W)O6:Eu3+ as red phosphors for white LED applications. Opt Mater 35(12):2716–2720.  https://doi.org/10.1016/j.optmat.2013.08.015 CrossRefGoogle Scholar
  7. 7.
    Suzuki S, Ryo M, Yamamoto T, Sakata T, Yanagida S, Wada Y (2007) Preparation of luminescent nanosized NaEu(MoO4)2 incorporated in amorphous matrix originated from zeolite. J Mater Sci 42(15):5991–5998.  https://doi.org/10.1007/s10853-006-1127-z CrossRefGoogle Scholar
  8. 8.
    Kumar JV, Karthik R, Chen SM, Natarajan K, Karuppiah C, Yang CC, Muthuraj V (2018) 3D flower-like gadolinium molybdate catalyst for efficient detection and degradation of organophosphate pesticide (fenitrothion). ACS Appl Mater Inter 10(18):15652–15664.  https://doi.org/10.1021/acsami.8b00625 CrossRefGoogle Scholar
  9. 9.
    Pang ML, Liu XM, Lin J (2005) Luminescence properties of R2MoO6:Eu3+ (R = Gd, Y, La) phosphors prepared by Pechini sol–gel process. J Mater Res 20(10):2676–2681.  https://doi.org/10.1557/Jmr.2005.0356 CrossRefGoogle Scholar
  10. 10.
    Lei F, Yan B, Chen HH (2008) Solid-state synthesis, characterization and luminescent properties of Eu3+-doped gadolinium tungstate and molybdate phosphors: Gd(2−x)MO6:Eux(3+) (M = W, MO). J Solid State Chem 181(10):2845–2851.  https://doi.org/10.1016/j.jssc.2008.07.008 CrossRefGoogle Scholar
  11. 11.
    Turianicová E, Witte R, Da Silva KL, Zorkovská A, Senna M, Hahn H, Heitjans P, Šepelák V (2017) Combined mechanochemical/thermal synthesis of microcrystalline pyroxene LiFeSi2O6 and one-step mechanosynthesis of nanoglassy LiFeSi2O6-based composite. J Alloy Compd 707:310–314.  https://doi.org/10.1016/j.jallcom.2016.11.172 CrossRefGoogle Scholar
  12. 12.
    Fuentes AF, Boulahya K, Maczka M, Hanuza J, Amador U (2005) Synthesis of disordered pyrochlores, A2Ti2O7 (A = Y, Gd and Dy), by mechanical milling of constituent oxides. Solid State Sci 7:343–353.  https://doi.org/10.1016/j.solidstatesciences.2005.01.002 CrossRefGoogle Scholar
  13. 13.
    Kovács TN, Hunyadi D, de Lucena ALA, Szilágyi IM (2016) Thermal decomposition of ammonium molybdates. J Therm Anal Calorim 124:1013–1021.  https://doi.org/10.1007/s10973-015-5201-0 CrossRefGoogle Scholar
  14. 14.
    Chithambararaj A, Sanjini NS, Velmathi S, Chandra Bose A (2013) Preparation of h-MoO3 and a-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys Chem Chem Phys 15:14761–14769.  https://doi.org/10.1039/c3cp51796a CrossRefGoogle Scholar
  15. 15.
    Feijoo PC, Pampillón MÁ, Andrés ES (2013) Optimization of gadolinium oxide growth deposited on Si by high pressure sputtering. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom B 31:01A103.  https://doi.org/10.1116/1.4766184 Google Scholar
  16. 16.
    Tyulin AV, Efremov VA (1987) Polymorphism of oxytungstates Tr2WO6. Analysis of structural type II (Gd2WO6 and Gd2MoO6). Mechanism of structural change in Gd2WO6 in the phase transition II. Kristallografiya 32:371–377Google Scholar
  17. 17.
    Brixner LH, Sleight AW, Licis MS (1972) Ln2MoO6-type rare earth molybdates—preparation and lattice parameters. J Solid State Chem 5(2):186–190.  https://doi.org/10.1016/0022-4596(72)90027-8 CrossRefGoogle Scholar
  18. 18.
    Sosin SS, Prozorova LA, Smirnov AI, Bonville P, Bras GJL, Petrenko OA (2008) Spin dynamics of the pyrochlore magnets Gd2Ti2O7 and Gd2Sn2O7 in the paramagnetic state. Phys Rev B 77(10):104424.  https://doi.org/10.1103/PhysRevB.77.104424 CrossRefGoogle Scholar
  19. 19.
    Moon RM, Koehler WC (1975) Magnetic properties of Gd2O3. Phys Rev B 11(4):1609–1622.  https://doi.org/10.1103/PhysRevB.11.1609 CrossRefGoogle Scholar
  20. 20.
    Patel SKS, Dhak P, Kim M-K, Lee J-H, Kim M, Kim S-K (2016) Structural and magnetic properties of Co-doped Gd2O3 nanorods. J Magn Magn Mater 403:155–160.  https://doi.org/10.1016/j.jmmm.2015.11.093 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of GeotechnicsSlovak Academy of SciencesKosiceSlovakia
  2. 2.Institute of Physics, Faculty of ScienceP.J. Šafárik UniversityKosiceSlovakia
  3. 3.Varmind s.r.oBrnoCzech Republic
  4. 4.Laboratory of Excellent Research, Faculty of Civil EngineeringTechnical University of KosiceKosiceSlovakia

Personalised recommendations