Advertisement

Strong covalent interaction Fe2O3/nitrogen-doped porous carbon fiber hybrids as free-standing anodes for lithium-ion batteries

  • Weiyang Li
  • Fan Yang
  • Yichuan RuiEmail author
  • Bohejin TangEmail author
Energy materials
  • 32 Downloads

Abstract

A simple and novel method that combines the electrospinning technology with nonaqueous sol–gel method is developed to incorporate Fe2O3 nanoparticles into ZIF-8-derived nitrogen-doped highly porous carbon fibers (NPCFs). The size of Fe2O3 nanoparticles is about 5 nm. The interfacial interaction between Fe2O3 and NPCFs is investigated by thermogravimetric analysis, Raman spectrum and X-ray photoelectron energy spectrum. We found that Fe2O3 nanoparticles are anchored strongly in the NPCFs through the Fe–O–C covalent bond. The impact of the Fe2O3 content in the composites on electrochemical performance is also studied. When served as the flexible and free-standing anode of lithium-ion batteries (LIBs), the Fe2O3/NPCFs-66.9% exhibits superior electrochemical performance with the high discharge capacity of 1351 mA h g−1 at 50 mA g−1, remarkable rate capability (337 mA h g−1 even at 5000 mA g−1), and stable cycling performance (1106 mA h g−1 after 100 cycles at 100 mA g−1). The excellent anodic property can be ascribed to the ultra-small size of Fe2O3 nanoparticles, and the one-dimensional (1D) structure combined with the excellent electrical conductivity of NPCFs matrix. Moreover, the robust interfacial interaction Fe–O–C bond can restrain the aggregation of Fe2O3 nanoparticles and accommodate the volume change. This can effectively maintain the integrity of the whole electrode during the long-term cycles. The results show that the composite may be considered as a promising anode material for advanced LIBs.

Notes

Acknowledgements

This work was financially supported by the Shanghai University of Engineering Science Innovation Fund for Graduate Students (17KY0405).

Supplementary material

10853_2019_3330_MOESM1_ESM.docx (548 kb)
Supplementary material 1 (DOCX 548 kb)

References

  1. 1.
    Zhang Y, Zhao Y, Ren J, Weng W, Peng H (2016) Advances in wearable fiber-shaped lithium-ion batteries. Adv Mater 28:4524–4531.  https://doi.org/10.1002/adma.201503891 CrossRefGoogle Scholar
  2. 2.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264.  https://doi.org/10.1016/j.mattod.2014.10.040 CrossRefGoogle Scholar
  3. 3.
    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29.  https://doi.org/10.1038/nchem.2085 CrossRefGoogle Scholar
  4. 4.
    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699.  https://doi.org/10.1039/c0ee00699h CrossRefGoogle Scholar
  5. 5.
    Ji L, Rao M, Zheng H et al (2011) Graphene oxide as a Sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525.  https://doi.org/10.1021/ja206955k CrossRefGoogle Scholar
  6. 6.
    Li W, Wu J, Chen Y, Wang X, Zhou R, Chen S, Guo Q, Hou H, Song Y (2015) Hollow Nitrogen-doped Fe3O4/Carbon nanocages with hierarchical porosities as anode materials for lithium-ion batteries. Electrochim Acta 186:50–57.  https://doi.org/10.1016/j.electacta.2015.10.134 CrossRefGoogle Scholar
  7. 7.
    Keppeler M, Shen N, Nageswaran S, Srinivasan M (2016) Synthesis of α-Fe2O3/Carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. J Mater Chem A 4:18223–18239.  https://doi.org/10.1039/c6ta08456g CrossRefGoogle Scholar
  8. 8.
    Li J, Dahn HM, Krause LJ, Le D-B, Dahn JR (2008) Impact of binder choice on the performance of α-Fe2O3 as a negative electrode. J Electrochem Soc 155:A812–A816.  https://doi.org/10.1149/1.2969433 CrossRefGoogle Scholar
  9. 9.
    Larcher D, Masquelier C, Bonnin D et al (2003) Effect of particle size on lithium intercalation into α-Fe2O3. J Electrochem Soc 150:A133–A139.  https://doi.org/10.1149/1.1528941 CrossRefGoogle Scholar
  10. 10.
    Larcher D, Bonnin D, Cortes R, Rivals I, Personnaz L, Tarascon JM (2003) Combined XRD, EXAFS, and Mössbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:A1643–A1650.  https://doi.org/10.1149/1.1622959 CrossRefGoogle Scholar
  11. 11.
    Wang Z, Luan D, Madhavi S, Hu Y, Lou X (2012) Assembling carbon-coated α-Fe2O3hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256.  https://doi.org/10.1039/c1ee02831f CrossRefGoogle Scholar
  12. 12.
    Luo D, Lin F, Xiao W, Zhu W (2017) Synthesis and electrochemical performance of α-Fe2O3@carbon aerogel composite as an anode material for Li-ion batteries. Ceram Int 43:2051–2056.  https://doi.org/10.1016/j.ceramint.2016.10.178 CrossRefGoogle Scholar
  13. 13.
    Ji L, Toprakci O, Alcoutlabi M et al (2012) α-Fe2O3 Nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 4:2672–2679.  https://doi.org/10.1021/am300333s CrossRefGoogle Scholar
  14. 14.
    Zhu J, Zhu T, Zhou X et al (2011) Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3:1084–1089.  https://doi.org/10.1039/c0nr00744g CrossRefGoogle Scholar
  15. 15.
    Liu L, Yang X, Lv C et al (2016) Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Appl Mater Interfaces 8:7047–7053.  https://doi.org/10.1021/acsami.5b12427 CrossRefGoogle Scholar
  16. 16.
    Xiao W, Wang Z, Guo H et al (2013) Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries. Appl Surf Sci 266:148–154.  https://doi.org/10.1016/j.apsusc.2012.11.118 CrossRefGoogle Scholar
  17. 17.
    Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144–4150.  https://doi.org/10.1002/adma.201200197 CrossRefGoogle Scholar
  18. 18.
    Wang X, Zhang M, Liu E et al (2016) Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries. Appl Surf Sci 390:350–356.  https://doi.org/10.1016/j.apsusc.2016.08.112 CrossRefGoogle Scholar
  19. 19.
    Park Y, Oh M, Park JS et al (2015) Electrochemically deposited Fe2O3 nanorods on carbon nanofibers for free-standing anodes of lithium-ion batteries. Carbon 94:9–17.  https://doi.org/10.1016/j.carbon.2015.06.031 CrossRefGoogle Scholar
  20. 20.
    Zhang H, Zhou L, Noonan O, Martin DJ, Whittaker AK, Yu C (2014) Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage. Adv Funct Mater 24:4337–4342.  https://doi.org/10.1002/adfm.201400178 CrossRefGoogle Scholar
  21. 21.
    Zhu Q, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512.  https://doi.org/10.1039/c3cs60472a CrossRefGoogle Scholar
  22. 22.
    Sun X, Huang H, Wang C, Liu Y, Bu X (2014) Effective CoxSy HER electrocatalysts fabricated in situ sulfurating of metal-organic framework. ChemElectroChem. 5(23):3639–3644.  https://doi.org/10.1002/celc.201801238 CrossRefGoogle Scholar
  23. 23.
    Wu J, Song Y, Zhou R, Chen S, Li Z, Hou H, Wang L (2015) Zn–Fe–ZIF-derived porous ZnFe2O4/C@NCNTs nanocomposites as anode for lithium-ion batteries. J Mater Chem A 3:7793–7798.  https://doi.org/10.1039/c5ta00805k CrossRefGoogle Scholar
  24. 24.
    Chen Y, Zheng L, Fu Y, Zhou R, Song Y, Chen S (2016) MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv 6:85917–85923.  https://doi.org/10.1039/c6ra19041c CrossRefGoogle Scholar
  25. 25.
    Kong L, Zhu J, Shuang W, Bu X (2018) Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv Energy Mater 8:1801515.  https://doi.org/10.1002/aenm.201801515 CrossRefGoogle Scholar
  26. 26.
    Zhong M, He W, Wei S, Liu Y, Hu T, Bu X (2018) Metal-organic framework derived core-shell Co/Co3O4@N-C nanocomposites as high performance anode materials for lithium ion batteries. Inorg Chem 57:4620–4628.  https://doi.org/10.1021/acs.inorgchem.8b00365 CrossRefGoogle Scholar
  27. 27.
    Zhang C, Wang X, Liang Q et al (2016) Amorphous phosphorus/Nitrogen-doped graphene paper for ultrastable Sodium-ion batteries. Nano Lett 16:2054–2060.  https://doi.org/10.1021/acs.nanolett.6b00057 CrossRefGoogle Scholar
  28. 28.
    Li W, Hu S, Luo X et al (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29(16):1605820.  https://doi.org/10.1002/adma.201605820 CrossRefGoogle Scholar
  29. 29.
    Han Y, Qi P, Li S et al (2014) A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem Commun 50:8057–8060.  https://doi.org/10.1039/c4cc02691h CrossRefGoogle Scholar
  30. 30.
    Wang J, Wang G, Wang H (2015) Flexible free-standing Fe2O3/graphene/carbon nanotubes hybrid films as anode materials for high performance lithium-ion batteries. Electrochim Acta 182:192–201.  https://doi.org/10.1016/j.electacta.2015.09.080 CrossRefGoogle Scholar
  31. 31.
    Yang D, Xu S, Dong S et al (2015) Facile synthesis of free-standing Fe2O3/carbon nanotube composite films as high-performance anodes for lithium-ion batteries. RSC Adv 5:106298–106306.  https://doi.org/10.1039/c5ra21609e CrossRefGoogle Scholar
  32. 32.
    Wang H, Yuan S, Ma D, Zhang X, Yan J (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681.  https://doi.org/10.1039/c4ee03912b CrossRefGoogle Scholar
  33. 33.
    Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800.  https://doi.org/10.1021/ar600035e CrossRefGoogle Scholar
  34. 34.
    Gan Y, Xu F, Luo J et al (2016) One-pot biotemplate synthesis of FeS2 decorated Sulfur-doped carbon fiber as high capacity anode for lithium-ion batteries. Electrochim Acta 209:201–209.  https://doi.org/10.1016/j.electacta.2016.05.076 CrossRefGoogle Scholar
  35. 35.
    Huang P, Tao W, Wu H et al (2017) N-doped coaxial CNTs@α-Fe2O3@C nanofibers as anode material for high performance lithium ion battery. J Energy Chem 27(5):1453–1460.  https://doi.org/10.1016/j.jechem.2017.09.011 CrossRefGoogle Scholar
  36. 36.
    D Yang, L K, M Zhong, J Zhu, and X Bu (2018) Metal–organic gel-derived FexOy/nitrogen-doped carbon films for enhanced lithium storage. Small 1804058.  https://doi.org/10.1002/smll.201804058
  37. 37.
    Zhou G, Wang D, Yin L, Li N, Li F, Cheng H (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of Lithium storage. ACS Nano 6:3214–3223CrossRefGoogle Scholar
  38. 38.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10:751–758.  https://doi.org/10.1021/nl904286r CrossRefGoogle Scholar
  39. 39.
    Zhou J, Song H, Ma L, Chen X (2011) Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv 1:782–791.  https://doi.org/10.1039/c1ra00402f CrossRefGoogle Scholar
  40. 40.
    Li Z, Tang B (2017) Mn3O4/nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries. Green Chem 19:5862–5873.  https://doi.org/10.1039/c7gc02786a CrossRefGoogle Scholar
  41. 41.
    Ma J, He Y, Zhang W et al (2015) An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy 16:235–246.  https://doi.org/10.1016/j.nanoen.2015.06.026 CrossRefGoogle Scholar
  42. 42.
    Delamar M, Combellas Catherine, Kanoufi Fre ´ric, Pinson Jean, Podvorica|´de Fetah I (2005) Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic or neutral aqueous solution. Chem Mater 17:3968–3975CrossRefGoogle Scholar
  43. 43.
    Nguyen T, Lee S (2017) Green synthesis of N-doped carbon modified iron oxides (N-Fe2O3@Carbon) using sustainable gelatin cross-linker for high performance Li-ion batteries. Electrochim Acta 248:37–45.  https://doi.org/10.1016/j.electacta.2017.07.114 CrossRefGoogle Scholar
  44. 44.
    Guo H, Li T, Chen W et al (2014) General design of hollow porous CoFe2O4 nanocubes from metal–organic frameworks with extraordinary lithium storage. Nanoscale 6:15168–15174.  https://doi.org/10.1039/c4nr04422c CrossRefGoogle Scholar
  45. 45.
    Wu H, Chen J, Hng H, Lou X (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542.  https://doi.org/10.1039/c2nr11966h CrossRefGoogle Scholar
  46. 46.
    Guo W, Sun W, Lv L, Kong S, Wang Y (2017) Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for li-ion storage. ACS Nano 11:4198–4205.  https://doi.org/10.1021/acsnano.7b01152 CrossRefGoogle Scholar
  47. 47.
    Gao G, Zhang Q, Wang K, Song H, Qiu P, Cui D (2013) Axial compressive α-Fe2O3 microdisks prepared from CSS template for potential anode materials of lithium ion batteries. Nano Energy 2:1010–1018.  https://doi.org/10.1016/j.nanoen.2013.03.023 CrossRefGoogle Scholar
  48. 48.
    Sun C, Chen S, Li Z (2018) Controllable synthesis of Fe2O3-carbon fiber composites via a facile sol–gel route as anode materials for lithium ion batteries. Appl Surf Sci 427:476–484.  https://doi.org/10.1016/j.apsusc.2017.08.070 CrossRefGoogle Scholar
  49. 49.
    Jia X, Chen J, Xu J et al (2012) Fe2O3 xerogel used as the anode material for lithium ion batteries with excellent electrochemical performance. Chem Comm 48:7410–7412.  https://doi.org/10.1039/c2cc33469k CrossRefGoogle Scholar
  50. 50.
    Son M, Hong Y, Lee J, Kang Y (2013) One-pot synthesis of Fe2O3 yolk-shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale 5:11592–11597.  https://doi.org/10.1039/c3nr03978a CrossRefGoogle Scholar
  51. 51.
    Ko Y, Park S, Jung K, Kang Y (2013) One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett 13:5462–5466.  https://doi.org/10.1021/nl4030352 CrossRefGoogle Scholar
  52. 52.
    Li W, Li Z, Yang F, Fang X, Tang B (2017) Synthesis and electrochemical performance of SnOx quantum dots@UiO-66 hybrid for lithium ion battery applications. ACS Appl Mater Interfaces 9:35030–35039.  https://doi.org/10.1021/acsami.7b11620 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations